搜索
    上传资料 赚现金
    英语朗读宝

    专题24.4 垂直于弦的直径(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版)

    专题24.4 垂直于弦的直径(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版)第1页
    专题24.4 垂直于弦的直径(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版)第2页
    专题24.4 垂直于弦的直径(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版)第3页
    还剩42页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题24.4 垂直于弦的直径(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版)

    展开

    这是一份专题24.4 垂直于弦的直径(专项练习)-2021-2022学年九年级数学上册基础知识专项讲练(人教版),共45页。试卷主要包含了利用垂径定理求值,利用垂径定理求平行弦,利用垂径定理求小圆问题,利用垂径定理求其他问题,垂径定理的推论,利用垂径定理的实际应用等内容,欢迎下载使用。
    专题24.4 垂直于弦的直径(专项练习)
    一、 单选题
    知识点一、利用垂径定理求值
    1.如图:AB是⊙O的直径,弦CD⊥AB于E,若AB=20,CD=16,则线段BE的长为( )

    A.4 B.6 C.8 D.10
    2.AB为⊙O的直径,弦CD⊥AB于点E,已知CD=16,OE=6,则⊙O的直径为(  )

    A.8 B.10 C.16 D.20
    3.如图,在半径为的⊙O中,弦AB,CD互相垂直,垂足为点P.若AB=CD=8,则OP的长为( )

    A. B.
    C.4 D.2
    4.如图,在中,直径,垂足为M.若,则的半径为( )

    A.0.2 B.2.6 C.2.4 D.4
    知识点二、利用垂径定理求平行弦
    5.⊙O的半径是13,弦AB∥CD,AB=24,CD=10,则AB与CD的距离是(  )
    A.7 B.17 C.7或17 D.34
    6.如图,A,B,C,D是⊙O上的四个点,AD∥BC,那么弧AB与弧CD的数量关系是( )

    A.弧AB =弧CD B.弧AB>弧CD C.弧AB<弧CD D.无法确定
    7.AB和CD是⊙O的两条平行弦,AB=6,CD=8,⊙O的半径为5,则AB与CD间的距离为(  )
    A.1或7 B.7 C.1 D.3或4
    8.的半径为,弦,,,则、间的距离是:( )
    A. B. C.或 D.以上都不对
    知识点三、利用垂径定理求小圆问题
    9.已知△ABC的边BC= ,且△ABC内接于半径为2的⊙O,则∠A的度数是(    )
    A.60°  B.120° C.60°或120°  D.90°
    10.如图,在以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于C点,AB=12cm,AO=8cm,则OC长为( )cm

    A.5 B.4 C. D.
    11.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水面AB的宽度是(  )cm.

    A.6 B. C. D.
    知识点四、利用垂径定理求其他问题
    12.如图,已知的半径为5,弦,则上到弦所在直线的距离为2的点有( )

    A.4个 B.3个 C.2个 D.1个
    13.如图,已知的直径弦于点则下列结论不一定成立的是( )

    A. B. C. D.
    14.如图,⊙O的半径为5,弦AB=8,P是弦AB上的一个动点(不与A,B重合),下列符合条件的OP的值是(  )

    A.6.5 B.5.5 C.3.5 D.2.5
    15.如图,已知⊙O的半径为4,M是⊙O内一点,且OM=2,则过点M的所有弦中,弦长是整数的共有(  )

    A.1条 B.2条 C.3条 D.4条
    知识点五、垂径定理的推论
    16.已知点在上.则下列命题为真命题的是( )
    A.若半径平分弦.则四边形是平行四边形
    B.若四边形是平行四边形.则
    C.若.则弦平分半径
    D.若弦平分半径.则半径平分弦
    17.下列语句,错误的是(  )
    A.直径是弦 B.相等的圆心角所对的弧相等
    C.弦的垂直平分线一定经过圆心 D.平分弧的半径垂直于弧所对的弦
    18.如图,在中,是直径,是弦,,垂足为,则下列说法中正确的是( )

    A. B.点是劣弧的中点 C. D.是弧中点
    19.下列语句中不正确的有( )
    ①相等的圆心角所对的弧相等; ②平分弦的直径垂直于弦; ③圆是轴对称图形,任何一条直径都是它的对称轴 ; ④长度相等的两条弧是等弧
    A.3个 B.2个 C.1个 D.4个
    知识点六、利用垂径定理的实际应用
    20.往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为( )

    A. B. C. D.
    21.如图,是的内接三角形,,是直径,,则的长为( )


    A.4 B. C. D.
    22.如图,是的弦,交于点,点是上一点,,则的度数为( ).

    A.30° B.40° C.50° D.60°
    23.如图,将半径为的圆折叠后,圆弧恰好经过圆心,则折痕的长为( )

    A.4cm B.2cm C.cm D.cm


    二、 填空题
    知识点一、利用垂径定理求值
    24.如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,,点C是的中点,点D是的中点,且,则这段弯路所在圆的半径为________m.

    25.如图,半径为5的与y轴交于点,点P的坐标为______.

    26.如图,是的直径,弦于点E,若,,则的长为______.

    27.如图,交轴与两点,交轴于点,弦于点的纵坐标为2,,.则圆心的坐标为____.
    知识点二、利用垂径定理求平行弦


    28.已知圆心到圆的两条平行弦的距离分别是2和3,则两条平行弦之间的距离为_____.
    29.已知的半径为,弦,且,则弦和之间的距离为_______.
    30.已知⊙O的直径为20, AB, CD分别是⊙O的两条弦,且AB//CD,AB=16,CD=10,则AB,CD之间的距离是_____.
    31.已知圆的两条平行弦分别长6dm和8dm,若这圆的半径是5dm,则两条平行弦之间的距离为_____.
    知识点三、利用垂径定理求其他问题
    32.如图,是圆的弦,,垂足为点,将劣弧沿弦折叠交于的中点,若,则圆的半径为_____.

    33.如图,在每个小正方形的边长为1的网格中,的顶点A在格点上,B是小正方形边的中点,,,经过点A,B的圆的圆心在边AC上.

    (Ⅰ)线段AB的长等于_______________;
    (Ⅱ)请用无刻度的直尺,在如图所示的网格中,画出一个点P,使其满足,并简要说明点P的位置是如何找到的(不要求证明)_____.
    34.如图,、是半径为5的的两条弦,,,是直 径,于点,于点,为上的任意一点,则的最小值为____.

    35.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为________.

    知识点四、垂径定理的推论
    36.如图,点A、B在半径为3的⊙O上,以OA、AB为邻边作平行四边形OCBA,作点B关于OA的对称点D,连接CD,则CD的最大值为________.

    37.如图,是的弦,是的中点,连接并延长交于点.若,则的半径是_________.

    38.如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是______度.

    39. 若⊙的一条弦长为24,弦心距为5,则⊙的直径长为__________.
    知识点六、利用垂径定理的实际应用
    40.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升______cm.

    41.如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,,量得,点在量角器上的读数为,则该直尺的宽度为____________.

    42.《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道尺(1尺=10寸),则该圆材的直径为______寸.

    43.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径⊥弦时,平分)可以求解.现已知弦米,半径等于5米的弧田,按照上述公式计算出弧田的面积为_____平方米.


    三、 解答题
    知识点一、利用垂径定理求值
    44.如图,是的直径,E为上一点,于点F,连接,,于点D.若,求线段长.




    知识点二、利用垂径定理求平行弦
    45.如图,已知⊙O的半径长为R=5,弦AB 与弦CD平行,它们之间距离为5,AB=6,求弦CD的长.




    知识点三、利用垂径定理求小圆问题
    46.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).
    (1)求证:AC=BD;
    (2)若大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.






    知识点五、垂径定理的推论
    47.如图所示,BC是半圆O的直径,AD⊥BC,垂足为D,弧长等于弧长,BF与AD,AO分别交于点E,G.求证:
    (1)∠DAO=∠FBC;
    (2)AE=BE.




    知识点六、利用垂径定理的实际应用
    48.好山好水好江山,石拱桥在江山处处可见,小明要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面宽度16m时,拱顶高出水平 面4m,货船宽12m,船舱顶部为矩形并高出水面3m。
    (1)请你帮助小明求此圆弧形拱桥的半径;
    (2)小明在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.


    参考答案
    1.A
    【分析】连接OC,求出OC,CE,根据勾股定理求出OE,即可求出答案.
    解:连接OC,
    ∵AB=20,
    ∴OC=OA=OB=10,
    ∵AB⊥CD,AB过O,
    ∴CE=DE=CD=8,
    在Rt△OCE中,由勾股定理得:OE==6,
    ∴BE=10﹣6=4.
    故选:A.

    【点拨】本题主要考查了垂径定理,熟练利用垂径定理是解题的关键.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.
    2.D
    【分析】连接OC,由垂径定理可知,点E为CD的中点,且OE⊥CD,在Rt△OEC中,根据勾股定理,即可得出OC,从而得出直径.
    【详解】

    连接OC,∵AB为⊙O的直径,弦CD⊥AB于点E
    ∴CE=CD=8,
    ∵OE=6.
    在Rt△OEC中,由勾股定理得:
    OC2=OE2+EC2,即OC2=62+82
    解得:OC=10
    ∴直径AB=2OC=20.
    故选D.
    【点拨】本题考查垂径定理,勾股定理.熟练掌握定理是解答关键.
    3.B
    【分析】作OM⊥AB于M,ON⊥CD于N,连接OA,OC,根据垂径定理得出BM=AM=4,DN=CN=4,根据勾股定理求出OM和ON,证明四边形OMPN是正方形,即可解决问题.
    解:如图,作OM⊥AB于M,ON⊥CD于N,连接OA,OC.

    ∴AM=BM=4,CN=DN=4,
    ∵OA=OC=2,
    ∴OM=,
    ON=,
    ∴OM=ON,
    ∵AB⊥CD,
    ∴∠OMP=∠ONP=∠MPN=90°,
    ∴四边形OMPN是矩形,
    ∵OM=ON,
    ∴四边形OMPN是正方形,
    ∴OP=OM=2,
    故选:B.
    【点拨】本题考查了垂径定理,勾股定理,正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考常考题型.
    4.B
    【分析】连接OC,设⊙O的半径为R,则OC=R,OM=5-R,根据垂径定理求出CM,根据勾股定理得出方程,求出即可.
    解:连接OC,设⊙O的半径为R,则OC=R,OM=5-R,
    ∵直径EF⊥CD,垂足为M,CD=2,
    ∴CM=DM=1,
    在Rt△OMC中,由勾股定理得:OC2=OM2+CM2,
    R2=(5-R)2+1²,
    解得R=2.6.
    故选:B.

    【点拨】本题考查了勾股定理,垂径定理的应用,用了方程思想,题目比较典型,难度适中.
    5.C
    【分析】先作出图象根据勾股定理分别求出弦AB,CD的弦心距OE,OF,再根据两弦在圆心同侧和在圆心异侧两种情况讨论.
    【详解】
    解:如图,
    设E、F为AB、CD的中点,
    AE=AB=24=12,
    CF=CD=10=5,
    OE===5,
    OF===12,
    ①当两弦在圆心同侧时,距离=OF-OE=12-5=7;
    ②当两弦在圆心异侧时,距离=OE+OF=12+5=17.
    所以距离为7或17.
    故选C.
    【点拨】本题主要考查勾股定理及垂径定理的应用.
    6.A
    【解析】
    因为在同圆中,平行弦所夹弧是等弧.故选A.
    点拨:本题主要考查圆中平行弦所夹弧,解决本题的关键是要熟练掌握平行弦定理.
    7.A
    【分析】分两种情况:①当AB、CD在圆心两侧时;②当AB、CD在圆心同侧时;利用垂径定理及勾股定理求出答案.
    【详解】
    解:①当AB、CD在圆心两侧时;
    过O作OE⊥CD交CD于E点,过O作OF⊥AB交AB于F点,连接OA、OC,如图所示:
    ∵半径r=5,弦AB∥CD,且AB=6,CD=8,
    ∴OA=OC=5,CE=DE=4,AF=FB=3,E、F、O在一条直线上,
    ∴EF为AB、CD之间的距离
    在Rt△OEC中,由勾股定理可得:
    OE2=OC2﹣CE2
    ∴OE3,
    在Rt△OFA中,由勾股定理可得:
    OF2=OA2﹣AF2
    ∴OF4,
    ∴EF=OE+OF=3+4=7,
    AB与CD的距离为7;
    ②当AB、CD在圆心同侧时;
    同①可得:OE=3,OF=4;
    则AB与CD的距离为:OF﹣OE=1;
    综上所述:AB与CD间的距离为1或7.
    故选:A.

    【点拨】此题考查圆的垂径定理、直角三角形的勾股定理,解题中注意运用分类讨论的思想避免漏解.
    8.C
    【分析】先根据勾股定理求出OE=6,OF=8,再分AB、CD在点O的同侧时,AB、CD在点O的两侧时两种情况分别计算求出EF即可.
    【详解】
    如图,过点O作OF⊥CD于F,交AB于点E,
    ∵,
    ∴OE⊥AB,
    在Rt△AOE中,OA=10,AE=AB=8,∴OE=6,
    在Rt△COF中,OC=10,CF=CD=6,∴OF=8,
    当AB、CD在点O的同侧时,、间的距离EF=OF-OE=8-6=2;
    当AB、CD在点O的两侧时,AB、CD间的距离EF=OE+OF=6+8=14,
    故选:C.

    【点拨】此题考查了圆的垂径定理,勾股定理,在圆中通常利用垂径定理和勾股定理求半径、弦的一半、弦心距三者中的一个量.
    9.C
    【分析】连接OB,OC,作OD⊥BC,利用垂径定理和特殊角的三角函数可求得∠BOD=60°,从而求得答案.注意弦所对的圆周角有锐角和钝角两种情况.
    【详解】
    ①当△ABC时锐角三角形时,

    连接OB,OC,过点O作OD⊥BC于点D,
    ∴ ,
    ∵OB=2

    ∴∠BOD=60°
    ∴∠BOC=2∠BOD=2×60°=120°,
    ∵=,
    ∴;
    ②当△ABC时钝角三角形时,如图,

    由①可知∠E=60°,
    ∵四边形ABEC是圆内接四边形,
    ∴∠E+∠A=180°,
    ∴∠A=180°-60°=120°.
    故∠A的度数为60°或120°.
    故答案为:C
    【点拨】本题考查了垂径定理、圆周角定理和解直角三角形.正确作出辅助线是解题的关键.
    10.D
    【详解】
    试题分析:O为圆心的两个同心圆的圆心,大圆的弦AB与小圆相切于C点,那么C点是AB的中点,即AC=BC==6;并且OC⊥AB,在中,由勾股定理得,所以;AO=8cm,所以,所以OC=
    考点:弦心距,勾股定理
    【点拨】本题考查弦心距,勾股定理,解答本题要求考生掌握弦心距的概念和性质,熟悉勾股定理的内容
    11.C
    【分析】作OD⊥AB于C,交小圆于D,可得CD=2,AC=BC,由AO、BO为半径,则OA=OD=4;然后运用勾股定理即可求得AC的长,即可求得AB的长.
    【详解】
    解:作OD⊥AB于C,交小圆于D,则CD=2,AC=BC,

    ∵OA=OD=4,CD=2,
    ∴OC=2,
    ∴AC=,
    ∴AB=2AC=.
    故答案为C.
    【点拨】本题考查的是垂径定理的应用及勾股定理,作出辅助线、构造出直角三角形是解答本题的关键.
    12.B
    【分析】作圆的直径CE⊥AB于点D,连接OA,根据勾股定理求出OE的长,求得C、E到弦AB所在的直线距离,与2比较大小,即可判断.
    【详解】
    解:作圆的直径CE⊥AB于点D,连接OA,
    ∵AB=8,
    ∴AD=4.
    ∵OA=5,
    ∴OD==3,
    ∴CD=OC-3=5-3=2,即C到弦AB所在的直线距离为2,
    ∴在劣弧AB上,到弦AB所在的直线距离为2的点只有C点;
    ∵DE=5+3=8>2,
    ∴在优弧AEB上到弦AB所在的直线距离为2的点有2个,即圆上到弦AB所在的直线距离为2的点有3个.
    故选:B.

    【点拨】本题考查了垂径定理,转化为C、E到弦AB所在的直线距离,与2比较大小是关键.
    13.B
    【分析】根据垂径定理得出,由此可判断A,再根据全等三角形的判定方法“AAS”即可证明,进而可判断C、D,而AE与OE不一定相等,由此可判断B.
    【详解】
    ∵的直径于点,
    ∴,故A选项结论成立;
    在和中,

    ∴,故D选项结论正确;
    ∴,故C选项结论正确;
    而AE与OE不一定相等,故B选项结论不成立;
    故选:B.
    【点拨】本题考查了垂径定理的应用,注意:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
    14.C
    【分析】连接OB,作OM⊥AB与M.根据垂径定理和勾股定理,求出OP的取值范围即可判断.
    【详解】
    解:连接OB,作OM⊥AB与M.

    ∵OM⊥AB,
    ∴AM=BM=AB=4,
    在直角△OBM中,∵OB=5,BM=4,
    ∴.
    ∴,
    故选:C.
    【点拨】本题考查了垂径定理、勾股定理,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.
    15.C
    【分析】过点M作AB⊥OM交⊙O于点A、B,根据勾股定理求出AM,根据垂径定理求出AB,进而得到答案.
    【详解】
    解:过点M作AB⊥OM交⊙O于点A、B,连接OA,

    则AM=BM=AB,
    在Rt△AOM中,AM===,
    ∴AB=2AM=,
    则≤过点M的所有弦≤8,
    则弦长是整数的共有长度为7的两条,长度为8的一条,共三条,
    故选:C.
    【点拨】本题考查了垂径定理,勾股定理,掌握垂直于选的直径平分这条弦,并平分弦所对的两条弧是解题关键.
    16.B
    【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可.
    【详解】
    A.∵半径平分弦,
    ∴OB⊥AC,AB=BC,不能判断四边形OABC是平行四边形,
    假命题;
    B.∵四边形是平行四边形,且OA=OC,
    ∴四边形是菱形,
    ∴OA=AB=OB,OA∥BC,
    ∴△OAB是等边三角形,
    ∴∠OAB=60º,
    ∴∠ABC=120º,
    真命题;
    C.∵,
    ∴∠AOC=120º,不能判断出弦平分半径,
    假命题;
    D.只有当弦垂直平分半径时,半径平分弦,所以是
    假命题,
    故选:B.
    【点拨】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假.
    17.B
    【分析】将每一句话进行分析和处理即可得出本题答案.
    【详解】
    A.直径是弦,正确.
    B.∵在同圆或等圆中,相等的圆心角所对的弧相等,
    ∴相等的圆心角所对的弧相等,错误.
    C.弦的垂直平分线一定经过圆心,正确.
    D.平分弧的半径垂直于弧所对的弦,正确.
    故答案选:B.
    【点拨】本题考查了圆中弦、圆心角、弧度之间的关系,熟练掌握该知识点是本题解题的关键.
    18.B
    【解析】
    【分析】根据弦的定义及垂径定理解答即可.
    【详解】
    A. ∵AD

    相关试卷

    专题24.6 垂直于弦的直径-垂径定理(培优篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版):

    这是一份专题24.6 垂直于弦的直径-垂径定理(培优篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版),共43页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题24.4 垂直于弦的直径-垂径定理(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版):

    这是一份专题24.4 垂直于弦的直径-垂径定理(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版),共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题24.5+垂直于弦的直径-垂径定理(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版):

    这是一份专题24.5+垂直于弦的直径-垂径定理(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(人教版),共34页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map