- 知识讲解_《函数应用》全章复习巩固_基础 试卷 2 次下载
- 知识讲解_集合的基本关系及运算_基础练习题 试卷 3 次下载
- 巩固练习_指数函数及其性质_基础 试卷 3 次下载
- 巩固练习_《集合》全章复习与巩固 试卷 3 次下载
- 巩固练习_ 奇偶性_提高 试卷 2 次下载
知识讲解_对数函数及其性质_基础练习题
展开对数函数及其性质
【学习目标】
1.理解对数函数的概念,体会对数函数是一类很重要的函数模型;
2.探索对数函数的单调性与特殊点,掌握对数函数的性质,会进行同底对数和不同底对数大小的比较;
3.了解反函数的概念,知道指数函数与对数函数互为反函数.
【要点梳理】
要点一、对数函数的概念
1.函数y=logax(a>0,a≠1)叫做对数函数.其中是自变量,函数的定义域是,值域为.
2.判断一个函数是对数函数是形如的形式,即必须满足以下条件:
(1)系数为1;
(2)底数为大于0且不等于1的常数;
(3)对数的真数仅有自变量.
要点诠释:
(1)只有形如y=logax(a>0,a≠1)的函数才叫做对数函数,像等函数,它们是由对数函数变化得到的,都不是对数函数。
(2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论。
要点二、对数函数的图象与性质
| a>1 | 0<a<1 |
图象 | ||
性质 | 定义域:(0,+∞) | |
值域:R | ||
过定点(1,0),即x=1时,y=0 | ||
在(0,+∞)上增函数 | 在(0,+∞)上是减函数 | |
当0<x<1时,y<0, 当x≥1时,y≥0 | 当0<x<1时,y>0, 当x≥1时,y≤0 |
要点诠释:
关于对数式logaN的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.
以1为分界点,当a,N同侧时,logaN>0;当a,N异侧时,logaN<0.
要点三、底数对对数函数图象的影响
1.底数制约着图象的升降.
如图
要点诠释:
由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略.
2.底数变化与图象变化的规律
在同一坐标系内,当a>1时,随a的增大,对数函数的图像愈靠近x轴;当0<a<1时,对数函数的图象随a的增大而远离x轴.(见下图)
要点四、反函数
1.反函数的定义
设分别为函数的定义域和值域,如果由函数所解得的也是一个函数(即对任意的一个,都有唯一的与之对应),那么就称函数是函数的反函数,记作,在中,是自变量,是的函数,习惯上改写成()的形式.函数()与函数()为同一函数,因为自变量的取值范围即定义域都是B,对应法则都为.
由定义可以看出,函数的定义域A正好是它的反函数的值域;函数的值域B正好是它的反函数的定义域.
要点诠释:
并不是每个函数都有反函数,有些函数没有反函数,如.一般说来,单调函数有反函数.
2.反函数的性质
(1)互为反函数的两个函数的图象关于直线对称.
(2)若函数图象上有一点,则必在其反函数图象上,反之,若在反函数图象上,则必在原函数图象上.
【典型例题】
类型一、对数函数的概念
例1.下列函数中,哪些是对数函数?
(1);
(2)
(3);
(4);
(5).
【答案】(5)
【解析】(1)中真数不是自变量,不是对数函数.
(2)中对数式后加2,所以不是对数函数.
(3)中真数为,不是,系数不为1,故不是对数函数.
(4)中底数是自变量,二非常数,所以不是对数函数.
(5)中底数是6,真数为,符合对数函数的定义,故是对数函数.
【总结升华】已知所给函数中有些形似对数函数,解答本题需根据对数函数的定义寻找满足的条件.
类型二、对数函数的定义域
求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.
例2. 求下列函数的定义域:
(1); (2).
【答案】(1);(2).
【解析】由对数函数的定义知:,,解出不等式就可求出定义域.
(1)因为,即,所以函数;
(2)因为,即,所以函数.
【总结升华】与对数函数有关的复合函数的定义域:求定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于的定义域时,应首先保证.
举一反三:
【变式1】求函数的定义域.
【答案】(1,)(,2]
【解析】因为, 所以,
所以函数的定义域为(1,)(,2].
类型三、对数函数的单调性及其应用
利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.
例3. 比较下列各组数中的两个值大小:
(1);
(2);
(3)与;
(4) 与.
(5)().
【思路点拨】利用函数的单调性比较函数值大小。
【答案】(1)< ;(2) <;(3) >;(4) >;(5) 略.
【解析】由数形结合的方法或利用函数的单调性来完成.
(1)解法1:画出对数函数的图象,横坐标为3.6的点在横坐标为8.9的点的下方,所以,;
解法2:由函数在R+上是单调增函数,且3.6<8.9,所以;
(2)与第(1)小题类似,在R+上是单调减函数,且1.9<3.5,所以;
(3)函数和的图象如图所示.当时,的图象在的图象上方,这里,.
(4)
(5) 注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.
解法1:当时,在(0,+∞)上是增函数,且4.2<4.8,所以,
当时,y=logax在(0,+∞)上是减函数,且4.2<4.8,所以,
解法2:转化为指数函数,再由指数函数的单调性判断大小,
令,则,令,则
当时,在R上是增函数,且4.2<4.8,
所以,b1<b2,即
当时,在R上是减函数,且4.2<4.8
所以,b1>b2,即.
【总结升华】比较两个对数值的大小的基本方法是:
(1)比较同底的两个对数值的大小,常利用对数函数的单调性.
(2)比较同真数的两个对数值的大小,常有两种方法:①先利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;②利用对数函数图象的互相位置关系比较大小.
(3)若底数与真数都不同,则通过一个恰当的中间量来比较大小.
【高清课堂:对数函数369070 例1】
例4.利用对数函数的性质比较、、的大小.
【答案】
【解析】,,,只需比较与的大小即可
【总结升华】本题也可以使用一个常用的结论:类似于的一个结论,,得出三个数的大小.
举一反三:
【变式1】设,,,则( )
A. a<b<c B. a<c<b C. b<c<a D. b<a<c
【思路点拨】直接判断对数值的范围,利用对数函数的单调性比较即可.
【答案】D
【解析】∵,,
.
∴b<a<c.
故选:D.
【总结升华】本题考查对数函数的单调性,对数值的大小比较,用单调性比较大小是函数单调性的一个重要应用.
例5.已知函数在区间[2,+∞)上递增,则实数a的取值范围是()
A. (-∞,4) B. (-4,4] C. (-∞,-4)∪[2,+∞) D. [-4,2)
【思路点拨】由题意知函数是由和复合而来,由复合函数单调性结论,只要t(x)在区间[2,+∞)上单调递增且f(x)>0即可.
【答案】B
【解析】令,由题意知:
t(x)在区间[2,+∞)上单调递增且t(x)>0
又a∈R+解得:-4<a≤4
则实数a的取值范围是(-4,4]
故选B.
【总结升华】本题主要考查复合函数的单调性和一元二次方程根的分布,换元法是解决本类问题的根本.
举一反三:
【变式1】求函数的值域和单调区间.
【答案】;减区间为,增区间为.
【解析】设,则,∵ y=为增函数,
的值域为.
再由:的定义域为
在上是递增而在上递减,而为增函数
∴ 函数y=的减区间为,增区间为.
类型四、函数的奇偶性
例6. 判断下列函数的奇偶性.
(1) (2).
【思路点拨】判断函数奇偶性的步骤是:(1)先求函数的定义域,如果定义域关于原点对称,则进行(2),如果定义域不关于原点对称,则函数为非奇非偶函数。(2)求,如果,则函数是偶函数,如果,则函数是奇函数。
【答案】(1)奇函数;(2)奇函数.
【解析】首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.
(1)由
所以函数的定义域为:(-2,2)关于原点对称
又
所以函数是奇函数;
【总结升华】此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.
(2)由
所以函数的定义域为R关于原点对称
又
即f(-x)=-f(x);所以函数.
【总结升华】此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握.
类型五、利用函数图象解不等式
例7.若不等式,当时恒成立,求实数a的取值范围.
【思路点拨】画出函数的图象与函数的图象,然后借助图象去求借。
【答案】
【解析】 要使不等式在时恒成立,即函数的图在内恒在函数图象的上方,而图象过点.由右图可知,,显然这里0<a<1,∴函数递减.又,∴,即.∴所求的a的取值范围为.
【总结升华】“数”是数学的特征,它精确、量化,最有说服力;而“形”则形象、直观,能简化思维过程,降低题目的难度,简化解题过程,把它们的优点集中在一起就是最佳组合.本例中,利用图形的形象直观快速地得到答案,简化了解题过程.正因为如此,数形结合成为中学数学的四个最基本的数学思想方法之一,因此我们必须熟练地掌握这一思想方法,并能灵活地运用它来分析和解决问题.
在涉及方程与不等式的问题时,往往构造两个函数与,则=的实数解等价于两个函数与的图象的交点的横坐标;而的的解等价于函数的图象在的图象下方的点的横坐标的取值范围.利用图象的形象性、直观性,可使问题得到顺利地解决,而且分散了问题解决的难度、简化了思维过程.因此,我们要善于用数形结合的方法来解决方程与不等式的问题.
举一反三:
【变式1】 当x∈(1,2)时,不等式恒成立,求a的取值范围.
【答案】1<a≤2
【解析】设,,要使当x∈(1,2)时,不等式恒成立,只需在(1,2)上的图象在的下方即可.当0<a<1时,由图象知显然不成立.当a>1时,如图2-2-5所示,要使在(1,2)上,的图象在的下方,
只需,
即,,∴1<a≤2.
类型六:对数函数性质的综合应用
例8.(2016春 广东揭阳月考)已知函数,其中a>0且a≠1.
(1)求函数f(x)的定义域;
(2)判断f(x)的奇偶性,并说明理由;
(3),求使f(x)>0成立的x的集合.
【思路点拨】(1)根据函数解析式有意义的条件即可求f(x)的定义域;
(2)根据函数的奇偶性的定义即可判断f(x)的奇偶性;
(3)根据,可得:a=2,根据对数函数的性质即可求使f(x)>0的x的解集.
【答案】(1)-1<x<1;(2)f(x)是奇函数;(3)(0,1).
【解析】(1)要使函数有意义,则,
解得-1<x<1,
(2)∵,
∴f(x)是奇函数.
(3)若,
∴,
解得:a=2,
∴,
若f(x)>0,则,
∴x+1>1-x>0,
解得0<x<1,
故不等式的解集为(0,1).
【总结升华】本题主要考查对数函数的定义域,奇偶性和不等式的求解,要求熟练对数函数的图象和性质.
举一反三:
【变式1】已知函数.
(1)若函数的定义域为R,求实数的取值范围;(2)若函数的值域为R,求实数的取值范围.
【答案】(1)a>1;(2)0≤a≤1.
【解析】(1)的定义域为R,即:关于x的不等式的解集为R,
当a=0时,此不等式变为2x+1>0,其解集不是R;
当a≠0时,有 a>1.∴ a的取值范围为a>1.
(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数 a=0或0≤a≤1,
∴ a的取值范围为0≤a≤1.
知识讲解_直线、平面垂直的性质_基础练习题: 这是一份知识讲解_直线、平面垂直的性质_基础练习题,共8页。
知识讲解_直线、平面平行的性质_基础练习题: 这是一份知识讲解_直线、平面平行的性质_基础练习题,共6页。
知识讲解_指数函数及其性质_基础练习题: 这是一份知识讲解_指数函数及其性质_基础练习题,共10页。