初中数学冀教版八年级下册21.4 一次函数的应用精品课后练习题
展开2022年冀教版数学八年级下册
21.4《一次函数的应用》课时练习
一、选择题
1.某种型号的计算器单价为40元,商家为了扩大销售量,现按八折销售,如果卖出x台这种计算器,共卖得y元,则用x表示y的关系式为( )
A.y=40x B.y=32x C.y=8x D.y=48x
2.一辆慢车以50千米/小时的速度从甲地驶往乙地,一辆快车以75千米/小时的速度从乙地驶往甲地,甲、乙两地之间的距离为500千米,两车同时出发,则图中折线大致表示两车之间的距离y(千米)与慢车行驶时间t(小时)之间的函数图象是( )
3.甲、乙两车同时从A地出发,以各自的速度匀速向B地行驶,甲车先到达B地后,立即按原路以相同速度匀速返回(停留时间不作考虑),直到两车相遇.若甲、乙两车之间的距离y(km)与两车行驶的时间x(h)之间的函数图象如图所示,则A,B两地之间的距离为( )
A.150 km B.300 km C.350 km D.450 km
4.在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C,乙车由B地驶往A地,两车同时出发,匀速行驶.甲、乙两车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论中:①A、B两地相距440千米;②甲车的平均速度是60千米/小时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇,正确的结论有( )
A.1个 B.2个 C.3个 D.4个
5.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则蜡烛燃烧的长度y(cm)与燃烧时间x(h)的函数关系用图象表示为下图中的( )
6.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )
A.甲的速度是4km/h B.乙的速度是10km/h
C.乙比甲晚出发1h D.甲比乙晚到B地3h
7.药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药后时间x(时)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是( )
A.≤y≤ B.≤y≤8 C.≤y≤8 D.8≤y≤16
8.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )
A.(0,0) B.(,) C.(-,-) D.(-,-)
二、填空题
9.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省 元.
10.已知等腰三角形的周长是20cm,求底边长y与腰长x之间的函数关系式,并写出自变量的取值范围 。
11.为了加强公民节水意识,某市制定了如下用水收费标准:每户每月用水不超过10吨,水价为每顿1.2元;超过10顿时,超过部分按每顿1.8元收费.该市某户居民5月份用水x吨(x>10),应交水费y元,则y关于x的关系式 。
12.李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是_____升.
13.某地区为了进一步缓解交通拥堵问题,决定修建一条长为6千米的公路,如果平均每天的修建费y(万元)与修建天数x(天)之间在30≤x≤120范围内,具有一次函数的关系,如下表所示.
则y关于x的函数解析式为 .(写出自变量取值范围)
14.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么从关闭进水管起 分钟该容器内的水恰好放完.
三、解答题
15.某种拖拉机的油箱可储油40升,加满油并开始工作3小时后,余下25升,假设每小时耗油量一定.
(1)设油箱中的余油量y(升),工作时间x(时),求y与x的函数解析式,并写出自变量的取值范围;
(2)画出(1)中的函数图象.
16.某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x千克,付款金额为y元.
(1)求y关于x的函数解析式;
(2)某农户一次购买玉米种子30千克,需付款多少元?
17.为了提高天然气使用效率,保障居民的本机用气需求,某地积极推进阶梯式气价改革,若一户居民的年用气量不超过300m3,价格为2.5元/m3,若年用气量超过300m3,超出部分的价格为3元/m3,
(1)根据题意,填写下表:
(2)设一户居民的年用气量为xm3,付款金额为y元,求y关于x的解析式;
(3)若某户居民一年使用天然气所付的金额为870元,求该户居民的年用气量.
18.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.
(1)甲、乙两种材料每千克分别是多少元?
(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?
(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)
参考答案
1.B
2.C.
3.D
4.D
5.A
6.C
7.C
8.C
9.答案为:2.
10.答案为:y=20-2x,5<x<10;
11.答案为:y=1.8x-6
12.答案为:2
13.答案为:y=﹣0.2x+50.
14.答案为:8.
15.解:(1)∵3小时耗油(40﹣25)升,∴每小时耗油5升,
∴余油量y=40﹣5x.0≤x≤8.
(2)图象如右图:
16.解:(1)根据题意,得
①当0≤x≤5时,y=20x;②当x>5,y=20×0.8(x﹣5)+20×5=16x+20;
(2)把x=30代入y=16x+20,∴y=16×30+20=500;
∴一次购买玉米种子30千克,需付款500元;
17.解:
18.解:(1)设甲种材料每千克x元,乙种材料每千克y元,
依题意得:,解得:;
答:甲种材料每千克25元,乙种材料每千克35元.
(2)设生产B产品a件,生产A产品(60﹣a)件.
依题意得:
解得:38≤a≤40;
∵a的值为非负整数,∴a=38、39、40;
答:共有如下三种方案:
方案1、A产品22个,B产品38个,
方案2、A产品21个,B产品39个,
方案1、A产品20个,B产品40个;
(3)生产A产品22件,B产品38件成本最低.理由如下:
设生产成本为W元,则W与a的关系式为:
W=(25×4+35×1+40)(60﹣a)+(35×3+25×3+50)a=55a+10 500,
即W是a的一次函数,
∵k=55>0
∴W随a增大而增大
∴当a=38时,总成本最低;即生产A产品22件,B产品38件成本最低.
初中人教版19.2.2 一次函数精练: 这是一份初中人教版19.2.2 一次函数精练,共8页。试卷主要包含了95+2,8厘米 B.26等内容,欢迎下载使用。
数学青岛版10.6 一次函数的应用优秀当堂检测题: 这是一份数学青岛版10.6 一次函数的应用优秀当堂检测题,共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湘教版八年级下册4.5 一次函数的应用精品同步训练题: 这是一份湘教版八年级下册4.5 一次函数的应用精品同步训练题,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。