终身会员
搜索
    上传资料 赚现金
    知识讲解_正余弦定理在解三角形中的应用_提高练习题
    立即下载
    加入资料篮
    知识讲解_正余弦定理在解三角形中的应用_提高练习题01
    知识讲解_正余弦定理在解三角形中的应用_提高练习题02
    知识讲解_正余弦定理在解三角形中的应用_提高练习题03
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    知识讲解_正余弦定理在解三角形中的应用_提高练习题

    展开
    这是一份知识讲解_正余弦定理在解三角形中的应用_提高练习题,共9页。

    正弦、余弦定理在三角形中的应用

    编稿:张希勇     审稿:李霞      

    【学习目标】

    1.进一步巩固正弦定理和余弦定理,并能综合运用两个定理解决三角形的有关问题;

    2.学会用方程思想解决有关三角形的问题,提高综合运用知识的能力和解题的优化意识.

    【要点梳理】

    要点一:正弦定理和余弦定理的概念

    正弦定理公式:

    (其中R表示三角形的外接圆半径)

    余弦定理公式:

    第一形式:

    第二形式:

    要点二:三角形的面积公式

    要点三:利用正、余弦定理解三角形

    已知两边和一边的对角或已知两角及一边时,通常选择正弦定理来解三角形;已知两边及夹角或已知三边时,通常选择余弦定理来解三角形.特别是求角时尽量用余弦定理来求,尽量避免分类讨论.

    中,已知A时,解的情况主要有以下几类:

    A为锐角时:

                 

                                  

        一解                   一解                 

                 

               

    两解                     无解

    A为直角或钝角时:

    要点四:三角形的形状的判定

    特殊三角形的判定:

    1)直角三角形  

    勾股定理:

    互余关系:

    2)等腰三角形

    用余弦定理判定三角形的形状(最大角的余弦值的符号)

    1)在中,

    2)在中,

    3)在中,

    要点五:解三角形时的常用结论

    中,

    1)在

    2)互补关系:

    3)互余关系:

    .

    【典型例题】

    类型一:利用正、余弦定理解三角形

    1. ABC中,A=45°a=2,求bBC.

    【思路点拨】

    本题已知边边角,用正弦定理比较简单,但要注意结合三角形中大边对大角定理以及有解、无解的图形来考虑。

    【解析】

    解法一 :正弦定理

    C=60°,则B=75°

    C=120°,则B=15°

    解法二:余弦定理

    解法三:正余弦定理

    b>c>a,所以B>C>A,所以B=75°C=60°

    c>a>b,所以C>A>B,所以B=15°C=120°.

     

    【总结升华】

    ①解三角形时,对于求解三角形的题目,一般都可有两种思路.但要注意方法的选择,同时要注意对解的讨论.

    ②解三角形时,要留意三角形内角和为180°、同一个三角形中大边对大角等性质的应用。

    举一反三:

    【变式1】在中,若,求角

    【答案】根据余弦定理:

      

    【变式22015  天津高考)在 中,内角 所对的边分别为 ,已知的面积为 的值为            .

    答案

    因为,所以

    ,解方程组,由余弦定理得

    ,所以.

    2ABC的内角ABC所对应的边分别为abc

    ()abc成等差数列,证明:sinAsinC2sin(AC)

    ()abc成等比数列,求cosB的最小值.

    【思路点拨】(1)因为abc成等差数列,所以a+c=2b,利用正弦定理用角表示边。(2因为abc成等数列,所以ac=b2,利用余弦定理用边表示角,然后利用基本不等式求解。

    【答案】()见解析; ()

    析】()abc成等差数列,

    2bac

    利用正弦定理化简得:2sinBsinAsinC

    sinBsin[π(AC)]sin(AC)

    sinAsinC2sinB2sin(AC)

    ()abc成等比数列,

    b2ac

    当且仅当ac时等号成立,

    cosB的最小值为

     

    【总结升华】

    对于三角形中边角的最大值或最小值问题可以运用正弦定理或余弦定理建立所求变量与三角形的角或边之间的函数关系,利用正、余弦函数的有界性二次函数或基本不等式的知识解决问题

    举一反三:

    【变式】中,三内角满足的方程

    有两个相等的根。

    1      求证:角B不大于

    2      当角B取最大值时,判断的形状

    【答案】

    1)由韦达定理得  

    由正弦定理,有2b=a+c

    由余弦定理得

    2)当角B取最大值时,,且a=c,易知为正三角形

    类型二:正、余弦定理的综合应用

    3在△ABC中,根据下面条件决定三角形形状.

    .

    【思路点拨】

    题目中给的是角与边的混合关系式,可用正弦定理化简成单一的角的关系,然后判断.

    【解析】

    ,

    由正弦定理得:,

    中,, ,

    ,

    ,即:

    是等腰三角形或直角三角形.

    【总结升华】

    1)要判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?是否符合勾股定理?还要研究角与角的大小关系:是否两个角相等?是否三个角相等?有无直角或钝角?

    2)解题的思想方法是:从条件出发,利用正、余弦定理等进行代换、转化、化简、运算,找出边与边的关系或角与角的关系,从而作出正确判断。

    3)一般有两种转化方向:要么转化为边,要么转化为角。

    4)判断三角形形状时,用边做、用角做均可。一般地,题目中给的是角,就用角做;题目中给的是边,就用边做,边角之间的转换可用正弦定理或余弦定理。

    5,不要丢解。

    举一反三:

    【变式】已知ABC 试判断△ABC的形状.

    【答案】

    方法一:用余弦定理化角为边的关系

    整理得

         时,为等腰三角形;

         时,则为直角三角形;

         综上:为等腰三角形或直角三角形。

    方法二:用正弦定理化边为角的关系

    由正弦定理得:

       

    ,即

    为等腰三角形或直角三角形。

    4.(2016  平果县模拟)已知在锐角, 为角A,B,C 所对的边,

    (1)求角A的值;

    (2),则求的取值范围.

    【答案】 12

    【思路点拨】(1)在锐角中,根据条件利用正弦定理可得,化简可得,由此可得A的值。

    2)由正弦定理可得,可得    

    再由,求得B的范围,再利用正弦函数的定义域和值域求得的取值范围。

    【解析】(1)在锐角中,根据

    利用正弦定理可得

    ,即

     

    则由正弦定理可得

           =

    由于,求得

    举一反三:

    【变式】(2016  唐山一模)在如图所示的四边形ABCD中,

    1)求用含 的代数式表示DC

    2)求面积S的最小值

    【答案】

    1)在中,

    由正弦定理可得 ,即

    于是:

    2)在中,由正弦定理得

    由(1)知:

    =

    =

    S取得最小值为 

    【高清课堂:正余弦定理在解三角形中的应用 377477  1

    5中,a,b,c分别是角A,B,C的对边,.

    1             

    2               c

    【解析】

    1)∵

    又∵,解得.

    C是锐角,

    2)∵,

    【总结升华】本题中应注意整体代换思想,及向量的夹角问题

    举一反三:

    【变式】中,a,b,c分别是角A,B,C的对边,设a,b,c满足条件

    ,求AtanB的值.

    【答案】利用余弦定理可求,利用正弦定理可求tanB=

     

    相关试卷

    知识讲解_直线与圆的方程的应用_提高练习题: 这是一份知识讲解_直线与圆的方程的应用_提高练习题,共7页。

    知识讲解_余弦定理_提高练习题: 这是一份知识讲解_余弦定理_提高练习题,共8页。

    巩固练习_正余弦定理在解三角形中的应用_基础: 这是一份巩固练习_正余弦定理在解三角形中的应用_基础,共5页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        知识讲解_正余弦定理在解三角形中的应用_提高练习题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map