八年级下册人教版第十九章第一节变量与函数知识讲解学案
展开变量与函数
【学习目标】
1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围);
2.能初步理解函数的概念;能初步掌握确定常见简单函数的自变量取值范围的基本方法;给出自变量的一个值,会求出相应的函数值.
3.对函数关系的表示法(如解析法、列表法、图象法)有初步认识.
4. 理解函数图象上的点的坐标与其解析式之间的关系,会判断一个点是否在函数的图象上,明确交点坐标反映到函数上的含义.
5. 初步理解函数的图象的概念,掌握用“描点法”画一个函数的图象的一般步骤,对已知图象能读图、识图,从图象解释函数变化的关系.
【要点梳理】
要点一、变量、常量的概念
在一个变化过程中,我们称数值发生变化的量为变量.数值保持不变的量叫做常量.
要点诠释:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,,速度60千米/时是常量,时间和里程为变量.
要点二、函数的定义
一般地,在一个变化过程中. 如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说 是自变量,是的函数.
要点诠释:对于函数的定义,应从以下几个方面去理解:
(1)函数的实质,揭示了两个变量之间的对应关系;
(2)对于自变量的取值,必须要使代数式有实际意义;
(3)判断两个变量之间是否有函数关系,要看对于允许取的每一个值,是否都有唯一确定的值与它相对应.
(4)两个函数是同一函数至少具备两个条件:
①函数关系式相同(或变形后相同);
②自变量的取值范围相同.
否则,就不是相同的函数.而其中函数关系式相同与否比较容易注意到,自变量的取值范围有时容易忽视,这点应注意.
要点三、函数值
是的函数,如果当=时=,那么叫做当自变量为时的函数值.
要点诠释:对于每个确定的自变量值,函数值是唯一的,但反过来,可以不唯一,即一个函数值对应的自变量可以是多个.比如:中,当函数值为4时,自变量的值为±2.
要点四、自变量取值范围的确定
使函数有意义的自变量的取值的全体实数叫自变量的取值范围.
要点诠释:自变量的取值范围的确定方法:
首先,要考虑自变量的取值必须使解析式有意义:
(1)当解析式是整式时,自变量的取值范围是全体实数;
(2)当解析式是分式时,自变量的取值范围是使分母不为零的实数;
(3)当解析式是二次根式时,自变量的取值范围是使被开方数不小于零的实数;
(4)当解析式中含有零指数幂或负整数指数幂时,自变量的取值应使相应的底数不为零;
(5)当解析式表示实际问题时,自变量的取值必须使实际问题有意义.
要点五、函数的几种表达方式:
变量间的单值对应关系有多种表示方法,常见的有以下三种:
(1)解析式法:用来表示函数关系的等式叫做函数关系式,也称函数的解析式.
(2)列表法:函数关系用一个表格表达出来的方法.
(3)图象法:用图象表达两个变量之间的关系.
要点诠释:函数的三种表示方法各有不同的长处.解析式法能揭示出变量之间的内在联系,但较抽象,不是所有的函数都能列出解析式;列表法可以清楚地列出一些自变量和函数值的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等;图象法可以直观形象地反映函数的变化趋势,而且对于一些无法用解析式表达的函数,图象可以充当重要角色.
要点六、函数的图象
对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
要点诠释:由函数解析式画出图象的一般步骤:列表、描点、连线.列表时,自变量的取值范围应注意兼顾原则,既要使自变量的取值有一定的代表性,又不至于使自变量或对应的函数值太大或太小,以便于描点和全面反映图象情况.
【典型例题】
类型一、变量与函数
1、下列等式中,是的函数有( )
A .1个 B.2个 C. 3个 D.4个
【答案】C;
【解析】要判断是否为函数,需判断两个变量是否满足函数的定义.对于 当取2,有两个值±和它对应,对于,当取2,有两个值±2和它对应,所以这两个式子不满足函数的定义的要求:都有唯一确定的值与对应,所以不是函数,其余三个式子满足函数的定义,故选C.
【总结升华】在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数.抓住函数定义中的关键词语“都有唯一确定的值”,与之间的对应,可以是“一对一”,也可以是“多对一”,不能是“一对多”.
举一反三:
【变式】下列函数中与表示同一函数的是( )
A. B. C. D.
【答案】D;
提示:表示同一函数,自变量的取值要相同,化简后的解析式要相同.
2、如图所示,下列各曲线中表示是的函数的有( ).
A.1个 B.2个 C.3个 D.4个
【答案】 C;
【解析】这是一道函数识别题,从函数概念出发,领悟其内涵,此题不难得到答案,④不构成函数关系.
【总结升华】在函数概念中注意两点:有两个变量,其中一个变量每取一个确定的值,另一个变量就有唯一的一个值与其对应.
类型二、函数解析式
3、求出下列函数中自变量的取值范围
(1). (2). (3).
(4). (5). (6).
【思路点拨】自变量的范围,是使函数有意义的的值,大致是开平方时,被开方数是非负数,分式的分母不为零等等.
【答案与解析】
解:(1). ,为任何实数,函数都有意义;
(2).,要使函数有意义,需2-3≠0,即≠;
(3).,要使函数有意义,需2+3≥0,即;
(4).,要使函数有意义,需2-1>0,即;
(5).,为任何实数,函数都有意义;
(6).,要使函数有意义,需,即≥-3且≠-2.
【总结升华】自变量的取值范围必须使整个解析式有意义.
加变式:
4、如图所示,在△ABC中,∠C=90°,AC=6,BC=10,设P为BC上任一点,点P不与点B、C重合,且CP=.若表示△APB的面积.
(1)求与之间的函数关系式;
(2)求自变量的取值范围.
【答案与解析】
解: (1)因为AC=6,∠C=90°,BC=10,
所以.
又,
所以,即.
(2)因为点P不与点B、C重合,BC=10,所以0<<10.
【总结升华】利用三角形面积公式找到函数关系式,要把握点P是一动点这个规律,结合图形观察到点P移动到特殊点,便可求出自变量的取值范围.
举一反三:
【变式】 小明在劳动技术课中要制作一个周长为80的等腰三角形.请你写出底边长()与腰长()的函数关系式,并求自变量的取值范围.
【答案】
解:由题意得,=80,
所以,
由于三角形两边之和大于第三边,且边长大于0,
所以,解得
所以.
类型三、函数值
5、 若与的关系式为,当=时,的值为( )
A.5 B.10 C.4 D.-4
【思路点拨】把代入关系式可求得函数值.
【答案】C;
【解析】.
【总结升华】是的函数,如果当=时=,那么叫做当自变量为时的函数值.
类型四、函数的图象
6、(2015春•织金县)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.
(1)玲玲到达离家最远的地方是什么时间?离家多远?
(2)她何时开始第一次休息?休息了多长时间?
(3)她骑车速度最快是在什么时候?车速多少?
(4)玲玲全程骑车的平均速度是多少?
【答案与解析】观察图象可知:
(1)玲玲到离家最远的地方需要3小时,此时离家30千米;
(2)10点半时开始第一次休息;休息了半小时;
(3)玲玲郊游过程中,各时间段的速度分别为:
9~10时,速度为10÷(10﹣9)=10(千米/时);
10~10.5时,速度约为(17.5﹣10)÷(10.5﹣10)=15(千米/小时);
10.5~11时,速度为0;
11~12时,速度为(30﹣17.5)÷(12﹣11)=12.5(千米/小时);
12~13时,速度为0;
13~15时,在返回的途中,速度为:30÷(15﹣13)=15(千米/小时);
可见骑行最快有两段时间:10~10.5时;13~15时.
两段时间的速度都是15千米/小时.速度为:30÷(15﹣13)=15(千米/小时);
(4)玲玲全程骑车的平均速度为:(30+30)÷(15﹣9)=10(千米/小时).
【总结升华】本题是一道函数图象的基础题,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,因此本题实际上是重点考查同学们的识图能力.
举一反三:
【变式】(2015•巴中)小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是( )
A. B. C. D.
【答案】B;