北师大版八年级下册4 角平分线课文内容ppt课件
展开2021年北师大版数学八年级下册
《角平分线》同步练习
一.选择题
1.如图,△ABC中,∠ABC=90°,点I为△ABC各内角平分线的交点,过I点作AC的垂线,垂足为H,若BC=6,AB=8,AC=10,那么IH的值为( )
A.2 B.3 C.4 D.5
2.如图,在△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,BC=8cm,BD:CD=3:4,则点D到AC的距离为( )cm.
A.3 B.4 C. D.
3.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=10,DE=4,则△BCE的面积等于( )
A.16 B.20 C.28 D.40
4.如图,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB于点E.若AC=10,DE=4,则AD的长为( )
A.2 B.4 C.6 D.8
5.如图,OC平分∠AOB,点P在OC上,且PD⊥OB,垂足为D,若PD=3cm,则P到OA的距离d满足( )
A.d<3cm B.d=3cm C.d>3cm D.无法确定
6.如图,△ABC中,∠ACF、∠EAC的角平分线CP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF.则下列结论中正确的个数( )
①BP平分∠ABC;②∠ABC+2∠APC=180°;③∠CAB=2∠CPB;④S△PAC=S△MAP+S△NCP.
A.1个 B.2个 C.3个 D.4个
7.如图,四边形ABCD中,∠A=90°,AD=2,连接BD,BD⊥CD,垂足是D且∠ADB=∠C,点P是边BC上的一动点,则DP的最小值是( )
A.1 B.1.5 C.2 D.2.5
8.如图,∠AOB=150°,OP平分∠AOB,PD⊥OB于点D,PC∥OB交OA于点C,若PD=3,则OC的长为( )
A.3 B.4 C.5 D.6
二.解答题
9.已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,
(1)如图1,求∠BDC的度数;
(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.
10.在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F.
(1)若BE=CF,求证:AD是△ABC的角平分线.
(2)若AD是△ABC的角平分线,求证:BE=CF.
2021年北师大版数学八年级下册
《角平分线》同步练习
参考答案与试题解析
一.选择题
1.如图,△ABC中,∠ABC=90°,点I为△ABC各内角平分线的交点,过I点作AC的垂线,垂足为H,若BC=6,AB=8,AC=10,那么IH的值为( )
A.2 B.3 C.4 D.5
【解答】解:连接IA、IB、IC,过I作IM⊥AB于M,IN⊥BC于N,
∵点I为△ABC各内角平分线的交点,IM⊥AB,IN⊥BC,IH⊥AC,
∴IH=IM=IN,
∵AB=8,BC=6,∠ABC=90°,
∴S△ABC===24,
∵S△ABC=S△AIB+S△BIC+S△AIC,
∴24=,
∵AB=8,BC=6,AC=10,IH=IM=IN,
∴24=++,
∴IH=2,
故选:A.
2.如图,在△ABC中,∠B=90°,AD平分∠BAC,交BC于点D,BC=8cm,BD:CD=3:4,则点D到AC的距离为( )cm.
A.3 B.4 C. D.
【解答】解:∵BC=8cm,BD:CD=3:4,
∴BD=(cm),
∵AD平分∠BAC,∠B=90°,
∴D到AC的距离等于BD,
∴D点到线段AC的距离为cm,
故选:D.
3.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=10,DE=4,则△BCE的面积等于( )
A.16 B.20 C.28 D.40
【解答】解:过E作EM⊥BC于M,
∵CD⊥AB,EM⊥BC,BE平分∠ABC,DE=4,
∴EM=DE=4,
∵BC=10,
∴△BCE的面积是
=
=20,
故选:B.
4.如图,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB于点E.若AC=10,DE=4,则AD的长为( )
A.2 B.4 C.6 D.8
【解答】解:∵BD是∠ABC的平分线,DE⊥AB,∠C=90°,
∴DC=DE=4,
∵AC=10,
∴AD=AC﹣CD=10﹣4=6.
故选:C.
5.如图,OC平分∠AOB,点P在OC上,且PD⊥OB,垂足为D,若PD=3cm,则P到OA的距离d满足( )
A.d<3cm B.d=3cm C.d>3cm D.无法确定
【解答】解:过点P作PE⊥OA于E,
∵OC平分∠AOB,PD⊥OB,PE⊥OA,
∴d=PE=PD=3cm,
故选:B.
6.如图,△ABC中,∠ACF、∠EAC的角平分线CP、AP交于点P,延长BA、BC,PM⊥BE,PN⊥BF.则下列结论中正确的个数( )
①BP平分∠ABC;②∠ABC+2∠APC=180°;③∠CAB=2∠CPB;④S△PAC=S△MAP+S△NCP.
A.1个 B.2个 C.3个 D.4个
【解答】解:过P作PQ⊥AC于Q,
∵∠ACF、∠EAC的角平分线CP、AP交于点P,PM⊥BE,PN⊥BF,
∴PM=PQ,PQ=PN,
∴PM=PN,
∴P在∠ABC的角平分线上,即BP平分∠ABC,故①正确;
∵PM⊥AB,PN⊥BC,PQ⊥AC,
∴∠PMA=∠PQA=90°,∠PQC=∠PNC=90°,
在Rt△PMA和Rt△PQA中,
,
∴Rt△PMA≌Rt△PQA(HL),
∴∠MPA=∠QPA,
同理Rt△PQC≌Rt△PNC,
∴∠QPC=∠NPC,
∵∠PMA=∠PNC=90°,
∴∠ABC+∠MPN=360°﹣90°﹣90°=180°,
∴∠ABC+2∠APC=180°,故②正确;
∵PC平分∠FCA,BP平分∠ABC,
∴∠FCA=∠ABC+∠CAB=2∠PCN,
又∵∠PCN=∠ABC+∠CPB,
∴∠ABC+∠CAB=2(∠ABC+∠CPB),
∴∠CAB=2∠CPB,故③正确;
∵Rt△PMA≌Rt△PQA,Rt△PQC≌Rt△PNC,
∴S△PAC=S△MAP+S△NCP,故④正确;
即正确的个数是4,
故选:D.
7.如图,四边形ABCD中,∠A=90°,AD=2,连接BD,BD⊥CD,垂足是D且∠ADB=∠C,点P是边BC上的一动点,则DP的最小值是( )
A.1 B.1.5 C.2 D.2.5
【解答】解:过点D作DE⊥BC于E,则DE即为DP的最小值,
∵∠BAD=∠BDC=90°,∠ADB=∠C,
∴∠ABD=∠CBD,
∵∠ABD=∠CBD,DA⊥AB,DE⊥BC,
∴DE=AD=2,
故选:C.
8.如图,∠AOB=150°,OP平分∠AOB,PD⊥OB于点D,PC∥OB交OA于点C,若PD=3,则OC的长为( )
A.3 B.4 C.5 D.6
【解答】解:∵∠AOB=150°,PC∥OB交OA于点C,
∴∠PCO=30°,
过P作PE⊥OA于E,
∵PD⊥OB,OP平分∠AOB
∴PE=PD=3,∴∠AOP=∠POD=75°,
∴∠CPD=75°,
∴OC=PC=6,
故选:D.
二.解答题
9.已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,
(1)如图1,求∠BDC的度数;
(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.
【解答】解:(1)∵BD平分∠ABC,
∴∠DBC=∠ABC=×60°=30°,
∵CD平分∠ACB,
∴∠DCB=∠ACB=×40°=20°,
∴∠BDC=180°﹣∠DBC﹣∠DCB
=180°﹣30°﹣20°
=130°;
(2)作DF⊥AC于F,DH⊥BC于H,如图2,
∵BD平分∠ABC,DE⊥AB,DH⊥BC,
∴DH=DE=2,
∵CD平分∠ACB,DF⊥AC,DH⊥BC,
∴DF=DH=2,
∴△ADC的面积=DF•AC=×2×4=4.
10.在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F.
(1)若BE=CF,求证:AD是△ABC的角平分线.
(2)若AD是△ABC的角平分线,求证:BE=CF.
【解答】证明:(1)∵DE⊥AB,DF⊥AC,
∴△BDE△DCF是直角三角形.
在Rt△BDE与Rt△DCF中,
,
∴Rt△BDE≌Rt△DCF(HL),
∴DE=DF,
又∵DE⊥AB,DF⊥AC,
∴AD是△ABC的角平分线;
(2)∵AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC于F,
∴DE=DF,
∵AD是BC边的中线,
∴BD=CD,
在Rt△BDE和Rt△CDF中,
,
∴Rt△BDE≌Rt△CDF(HL),
∴BE=CF.
初中数学北师大版八年级下册4 分式方程备课课件ppt: 这是一份初中数学北师大版八年级下册4 分式方程备课课件ppt,文件包含《分式方程》课件pptx、2021年北师大版数学八年级下册《分式方程》同步练习docx、2021年北师大版数学八年级下册《分式方程》教学设计docx等3份课件配套教学资源,其中PPT共23页, 欢迎下载使用。
初中数学北师大版八年级下册1 认识分式授课课件ppt: 这是一份初中数学北师大版八年级下册1 认识分式授课课件ppt,文件包含《认识分式》课件pptx、2021年北师大版数学八年级下册《认识分式》同步练习docx、2021年北师大版数学八年级下册《认识分式》教学设计docx等3份课件配套教学资源,其中PPT共32页, 欢迎下载使用。
初中数学北师大版八年级下册3 公式法教课内容ppt课件: 这是一份初中数学北师大版八年级下册3 公式法教课内容ppt课件,文件包含《公式法》课件pptx、2021年北师大版数学八年级下册《公式法》同步练习docx、2021年北师大版数学八年级下册《公式法》教学设计docx等3份课件配套教学资源,其中PPT共24页, 欢迎下载使用。