所属成套资源:备战2022年中考(通用版)一轮复习分类专项训练卷(含答案解析)
备战2022年中考(通用版)一轮复习分类专项训练卷:相交线与平行线 (word版,含解析)
展开
这是一份备战2022年中考(通用版)一轮复习分类专项训练卷:相交线与平行线 (word版,含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
备战2022年中考(通用版)一轮复习分类专项训练卷相交线与平行线 一、选择题1.如图,与∠1是内错角的是( )A.∠2 B.∠3 C.∠4 D.∠52.如图,直线a,b被直线c所截,若,,则的度数是( )A.70° B.100° C.110° D.120°3.如图,直线,将一个含角的三角尺按如图所示的位置放置,若,则的度数为( )A. B. C. D.4.如图,,,,则的度数为( )A. B. C. D.5.将一副三角尺按如图所示的位置摆放在直尺上,则∠1的度数为( )A.45° B.65° C.75° D.85°6.如图,直线AB∥CD,∠M=90°,∠CEF=120°,则∠MPB=( )A.30° B.60° C.120° D.150°7.如图,将矩形ABCD沿对角线BD折叠,使点C落在F处,BF交AD于点E.若∠BDC=62°,则∠DEF的度数为( )A.31° B.28° C.62° D.56°8.如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与出射光线的夹角为60°,则平面镜的垂线与水平地面的夹角α的度数是( )A.15° B.30° C.45° D.60°二、填空题9.将一副三角板如图摆放,则______∥______,理由是______.10.如图,直线,若,则____.11.如图,木棒AB、CD与EF分别在G、H处用可旋转的螺丝铆住,∠EGB=100°,∠EHD=80°,将木棒AB绕点G逆时针旋转到与木棒CD平行的位置,则至少要旋转 ___°.12.如图,直线,一块含有30°角的直角三角尺顶点E位于直线CD上,EG平分,则的度数为_________°.13.如图,已知,,,则__________.14.如图,点C位于点A正北方向,点B位于点A北偏东50°方向,点C位于点B北偏西35°方向,则∠ABC的度数为_____°.15.如图,直线,点在直线上,点在直线上,,,,则______.16.下图是可调躺椅示意图(数据如图),与的交点为,且,,保持不变.为了舒适,需调整的大小,使,则图中应___________(填“增加”或“减少”)___________度.三、解答题17.如图,直线分别与直线,交于点,.平分,平分,且∥.求证:∥. 18.如图,,,直线与,的延长线分别交于点,.求证:. 19.如图,是的角平分线,在上取点,使.(1)求证:.(2)若,,求的度数. 20.如图,AC是四边形ABCD的对角线,∠1=∠B,点E、F分别在AB、BC上,BE=CD,BF=CA,连接EF.(1)求证:∠D=∠2;(2)若EF∥AC,∠D=78°,求∠BAC的度数. 21.如图,.(1)求的度数;(2)若,求证:. 22.在三角形ABC中,于D,F是BC上一点,于H,E在AC上,.(1)如图1,求证:;(2)如图2,若,请直接写出图中与互余的角,不需要证明. 参考答案1.C【分析】根据内错角的定义,即两条直线被第三条直线所截,位于截线的两侧,且夹在两条被截直线之间的两个角,解答即可.【详解】根据内错角的定义,得:∠1是内错角的是 .故选:C【点睛】本题主要考查了内错角的定义,解题的关键是熟练掌握并理解内错角的定义.2.C【分析】由已知条件,可得,由平角的性质可得代入计算即可得出答案.【详解】解:如图,,,,.故选:.【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质进行求解是解决本题的关键.3.C【分析】根据平行线的性质求解,找出图中,进而求出∠3,再根据平行线性质求出∠2即可.【详解】解:如图,作,三角尺是含角的三角尺,,,,,,,,,故选:C.【点睛】此题考查平行线的性质,利用平行线性质求角,涉及到直角三角形两个余角的关系.4.C【分析】根据平行线的性质以及三角形外角的性质可得结果.【详解】解:如图,,,,,,.故选:.【点睛】本题考查了平行线的性质以及三角形外角的性质,熟知两直线平行,内错角相等以及三角的外角等于与它不相邻的两个内角的度数.5.C【分析】由平角等于180°结合三角板各角的度数,可求出∠2的度数,由直尺的上下两边平行,利用“两直线平行,同位角相等”可得出∠1的度数.【详解】解:∵∠2+60°+45°=180°,∴∠2=75°.∵直尺的上下两边平行,∴∠1=∠2=75°.故选:C.【点睛】本题考查了平行线的性质,牢记“两直线平行,同位角相等”是解题的关键.6.D【分析】根据平行线的性质和三角形外角性质解答即可.【详解】解:∵AB∥CD,∴∠EFP=∠CEF=120°,∴∠MPF=∠EFP-∠M=120°-90°=30°,∴∠MPB=180°-∠MPF=180°-30°=150°,故选:D.【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.7.D【分析】先利用互余计算出∠BDE=28°,再根据平行线的性质得∠CBD=∠BDE=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DEF的度数,于是得到结论.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵,∵AD∥BC,∴∠CBD=∠BDE=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DEF=∠FBD+∠BDE=28°+28°=56°.故选:D.【点睛】本题考查了矩形的性质,平行线和折叠的性质,综合运用以上性质是解题的关键.8.B【分析】作CD⊥平面镜,垂足为G,根据EF⊥平面镜,可得CD//EF,根据水平线与底面所在直线平行,进而可得夹角α的度数.【详解】解:如图,作CD⊥平面镜,垂足为G,∵EF⊥平面镜,∴CD//EF,∴∠CDH=∠EFH=α,根据题意可知:AG∥DF,∴∠AGC=∠CDH=α,∴∠AGC=α,∵∠AGCAGB60°=30°,∴α=30°.故选:B.【点睛】本题考查了入射角等于反射角问题,解决本题的关键是法线CG平分∠AGB.9. 内错角相等,两直线平行 【分析】根据三角板的角度可知,根据内错角相等,两直线平行判断即可.【详解】解:一副三角板如图摆放,∴,∴(内错角相等,两直线平行),故答案为:;;内错角相等,两直线平行.【点睛】本题考查了平行线的判定,熟知平行线的判定定理是解本题的关键.10.【分析】利用平行线的性质可得,再利用邻补角即可求的度数.【详解】解:如图,,,,.故答案为:.【点睛】本题主要考查平行线的性质,解答的关键是结合图形分析清楚角与角之间的关系.11.20【分析】根据同位角相等两直线平行,得出当∠EHD=∠EGN=80°,MN//CD,再得出旋转角∠BGN的度数即可得出答案.【详解】解:过点G作MN,使∠EHD=∠EGN=80°,∴MN//CD,∵∠EGB=100°,∴∠BGN=∠EGB-∠EGN=100°-80°=20°,∴至少要旋转20°.【点睛】本题考查了平行线的判定,以及图形的旋转,熟练掌握相关的知识是解题的关键.12.60【分析】根据角平分线的定义可求出的度数,即可得到的度数,再利用平行线的性质即可解决问题.【详解】一块含有30°角的直角三角尺顶点E位于直线CD上,,平分,,,,.故答案为:.【点睛】本题考查了角平分线定义和平行线的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.13.30°【分析】由题意易得,然后根据三角形内角和可进行求解.【详解】解:∵,,∴,∵,∴;故答案为30°.【点睛】本题主要考查平行线的性质及三角形内角和,熟练掌握平行线的性质及三角形内角和是解题的关键.14.95【分析】按照题意,将点A、B、C的位置关系表示在图中,过点B作一条平行于AC的线,并标注出已知角的度数,两平行线间内错角相等,可得∠1=∠BAC,则∠ABC的度数就可求得.【详解】解:如下图所示:过点B作一条平行于AC的线,由题意可得,∠1=∠A=50°(两直线平行,内错角相等),则∠ABC=180°-35°-50°=95°,故答案为:95.【点睛】本题主要考察了方位角的表示、平行线的性质应用,解题的关键在于根据题意,在图中表示出各个角的度数,同时还要掌握平行线的性质:①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补.15.【分析】利用等腰三角形的性质得到∠C=∠4=,利用平行线的性质得到∠1=∠3=,再根据三角形内角和定理即可求解.【详解】如图,延长CB交于点D,∵AB=BC,∠C=,∴∠C=∠4=,∵,∠1=,∴∠1=∠3=,∵∠C +∠3+∠2+∠4 =,即∴故答案为:.【点睛】本题考查了等腰三角形的性质,平行线的性质以及三角形内角和定理的应用,解决问题的关键是辅助线的作法,注意运用两直线平行,同位角相等.16.减少 10 【分析】先通过作辅助线利用三角形外角的性质得到∠EDF与∠D、∠E、∠DCE之间的关系,进行计算即可判断.【详解】解:∵∠A+∠B=50°+60°=110°,∴∠ACB=180°-110°=70°,∴∠DCE=70°,如图,连接CF并延长,∴∠DFM=∠D+∠DCF=20°+∠DCF,∠EFM=∠E+∠ECF=30°+∠ECF,∴∠EFD=∠DFM+∠EFM=20°+∠DCF+30°+∠ECF=50°+∠DCE=50°+70°=120°,要使∠EFD=110°,则∠EFD减少了10°,若只调整∠D的大小,由∠EFD=∠DFM+∠EFM=∠D+∠DCF+∠E+∠ECF=∠D+∠E+∠ECD=∠D+30°+70°=∠ D+100°,因此应将∠D减少10度;故答案为:①减少;②10.
【点睛】本题考查了三角形外角的性质,同时涉及到了三角形的内角和与对顶角相等的知识;解决本题的关键是理解题意,读懂图形,找出图形中各角之间的关系以及牢记公式建立等式求出所需的角,本题蕴含了数形结合的思想方法.17.证明见解析.【分析】先根据角平分线的定义可得,再根据平行线的性质可得,从而可得,然后根据平行线的判定即可得证.【详解】平分,平分,即.【点睛】本题考查了平行线的判定与性质、角平分线的定义等知识点,熟记平行线的判定与性质是解题关键.18.见解析【分析】根据已知条件,,得到,从而得到,即可证明.【详解】证明:∵,∴.∵,∴.∴.∴.【点睛】本题考查平行线的性质和判定.平行线的性质:两直线平行,内错角相等.平行线的判定:同位角相等,两直线平行.19.(1)见解析;(2)35°【分析】(1)直接利用角平分线的定义和等边对等角求出,即可完成求证;
(2)先求出∠ADE,再利用平行线的性质求出∠ ABC,最后利用角平分线的定义即可完成求解.
【详解】解:(1)平分,.,,,.(2),,...平分,,即.【点睛】本题综合考查了角平分线的定义、等腰三角形的性质、平行线的判定与性质等内容,解决本题的关键是牢记概念与性质,本题的解题思路较明显,属于几何中的基础题型,着重考查了学生对基本概念的理解与掌握.20.(1)证明见解析;(2)78°.【分析】(1)由“SAS”可证△BEF≌△CDA,可得∠D=∠2;(2)由(1)可得∠D=∠2=78°,由平行线的性质可得∠2=∠BAC=78°.【详解】证明:(1)在△BEF和△CDA中,,∴△BEF≌△CDA(SAS),∴∠D=∠2;(2)∵∠D=∠2,∠D=78°,∴∠D=∠2=78°,∵EF∥AC,∴∠2=∠BAC=78°.【点睛】本题考查了全等三角形的判定与性质,平行线的性质.证明△BEF≌△CDA是解题的关键21.(1)∠DAE=30°;(2)见详解.【分析】(1)根据AB∥DE,得出∠E=∠CAB=40°,再根据∠DAB=70°,即可求出∠DAE;(2)证明△DAE≌△CBA,即可证明AD=BC.【详解】(1)∵AB∥DE,∴∠E=∠CAB=40°,∵∠DAB=70°,∴∠DAE=∠DAB-∠CAB=30°;(2)由(1)可得∠DAE=∠B=30°,又∵AE=AB,∠E=∠CAB=40°, ∴△DAE≌△CBA(ASA),∴AD=BC.【点睛】本题考查了平行线的性质,全等三角形的判定和性质,求出∠DAE的度数是解题关键.22. (1)证明见解析; (2).【分析】(1)由垂直于同一条直线的两直线平行可推出.再根据平行线的性质可得出,即得出.最后根据平行线的判定条件,即可判断;(2)由可推出,,即得出,.由,可推出,即得出.由,可直接推出.由此即可判断哪些角与互余.(1)证明:∵,,∴,∴.∵,∴,∴.(2)与互余的角有:.证明:∵,∴,,∴,. ∵,∴,∴.∵,∴,即.综上,可知与互余的角有:.【点睛】本题考查平行线的判定和性质,余角的概念.熟练掌握平行线的判定条件和性质是解答本题的关键.
相关试卷
这是一份备战2022年中考(通用版)一轮复习分类专项训练卷:实数 (word版,含解析),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份备战2022年中考(通用版)一轮复习分类专项训练卷:规律题型(word版,含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份备战2022年中考(通用版)一轮复习分类专项训练卷:分式及其化简求值(word版,含解析),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。