初中数学人教版八年级上册12.2 三角形全等的判定学案及答案
展开全等三角形判定一(SSS,SAS)(提高)
【学习目标】
1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”;
2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.
【要点梳理】
要点一、全等三角形判定1——“边边边”
全等三角形判定1——“边边边”
三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”).
要点诠释:如图,如果=AB,=AC,=BC,则△ABC≌△.
要点二、全等三角形判定2——“边角边”
1. 全等三角形判定2——“边角边”
两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).
要点诠释:如图,如果AB = ,∠A=∠,AC = ,则△ABC≌△. 注意:这里的角,指的是两组对应边的夹角.
2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.
如图,△ABC与△ABD中,AB=AB,AC=AD,∠B=∠B,但△ABC与△ABD不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.
【典型例题】
类型一、全等三角形的判定1——“边边边”
1、如图,在△ABC和△ADE中,AB=AC,AD=AE,BD=CE,求证:∠BAD=∠CAE.
【答案与解析】
证明:在△ABD和△ACE中,
∴△ABD≌△ACE(SSS)
∴∠BAD=∠CAE(全等三角形对应角相等).
【总结升华】把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的判定和性质. 要证∠BAD=∠CAE,先找出这两个角所在的三角形分别是△BDA和△CAE,然后证这两个三角形全等.
举一反三:
【变式】已知:如图,AD=BC,AC=BD.试证明:∠CAD=∠DBC.
【答案】
证明:连接DC,
在△ACD与△BDC中
∴△ACD≌△BDC(SSS)
∴∠CAD=∠DBC(全等三角形对应角相等)
类型二、全等三角形的判定2——“边角边”
2、如图,AD是△ABC的中线,求证:AB+AC>2AD.
【思路点拨】延长AD到点E,使AD=DE,连接CE.通过证全等将AB转化到△CEA中,同时也构造出了2AD.利用三角形两边之和大于第三边解决问题.
【答案与解析】
证明:如图,延长AD到点E,使AD=DE,连接CE.
在△ABD和△ECD中,AD=DE,∠ADB=∠EDC,BD=CD.
∴△ABD≌△ECD.
∴AB=CE.
∵AC+CE>AE,
∴AC+AB>AE=2AD.即AC+AB>2AD.
【总结升华】证明边的大小关系主要有两个思路:(1)两点之间线段最短;(2)三角形的两边之和大于第三边.要证明AB+AC>2AD,如果归到一个三角形中,边的大小关系就是显然的,因此需要转移线段,构造全等三角形是转化线段的重要手段.可利用旋转变换,把△ABD绕点D逆时针旋转180°得到△CED,也就把AB转化到△CEA中,同时也构造出了2AD.若题目中有中线,倍长中线,利用旋转变换构造全等三角形是一种重要方法.
3、已知,如图:在△ABC中,∠B=2∠C,AD⊥BC,
求证:AB=CD-BD.
【思路点拨】在DC上取一点E,使BD=DE,则△ABD≌△AED,所以AB=AE,只要再证出EC=AE即可.
【答案与解析】
证明:在DC上取一点E,使BD=DE
∵ AD⊥BC,∴∠ADB=∠ADE
在△ABD和△AED中, BD=DE,AD=AD.
∴△ABD≌△AED(SAS).
∴AB=AE,∠B=∠AED.
又∵∠B=2∠C=∠AED=∠C+∠EAC.
∴∠C=∠EAC.∴AE=EC.
∴AB=AE=EC=CD—DE=CD—BD.
【总结升华】此题采用截长或补短方法.上升到解题思想,就是利用翻折变换,构造的全等三角形,把条件集中在基本图形里面,从而使问题加以解决.如图,要证明AB=CD-BD,把CD-BD转化为一条线段,可利用翻折变换,把△ABD沿AD翻折,使线段BD运动到DC上,从而构造出CD-BD,并且也把∠B转化为∠AEB,从而拉近了与∠C的关系.
举一反三:
【变式】已知,如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,并且AE=(AB+AD),求证:∠B+∠D=180°.
【答案】
证明:在线段AE上,截取EF=EB,连接FC,
∵CE⊥AB,
∴∠CEB=∠CEF=90°
在△CBE和△CFE中,
∴△CBE≌△CFE(SAS)
∴∠B=∠CFE
∵AE=(AB+AD),∴2AE= AB+AD
∴AD=2AE-AB
∵AE=AF+EF,
∴AD=2(AF+EF)-AB=2AF+2EF-AB=AF+AF+EF+EB-AB=AF+AB-AB,
即AD=AF
在△AFC和△ADC中
∴△AFC≌△ADC(SAS)
∴∠AFC=∠D
∵∠AFC+∠CFE=180°,∠B=∠CFE.
∴∠AFC+∠B=180°,∠B+∠D=180°.
类型三、全等三角形判定的实际应用
4、如图,公园里有一条“Z字形道路ABCD,其中AB∥CD,在AB,BC,CD三段路旁各有一个小石凳E,M,F,且BE=CF,M在BC的中点.试判断三个石凳E,M,F是否恰好在一条直线上?为什么?
【答案与解析】三个小石凳在一条直线上
证明:∵AB平行CD(已知)
∴∠B=∠C(两直线平行,内错角相等)
∵M在BC的中点(已知)
∴BM=CM(中点定义)
在△BME和△CMF中
∴△BME≌△CMF(SAS)
∴∠EMB=∠FMC(全等三角形的对应角相等)
∴∠EMF=∠EMB+∠BMF=∠FMC+∠BMF=∠BMC=180°(等式的性质)
∴E,M,F在同一直线上
【总结升华】对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决. 由已知易证△BME≌△CMF,可得∠EMB=∠FMC,再由∠EMF=∠EMB+∠BMF=∠FMC+∠BMF=∠BMC=180°得到E,M,F在同一直线上.
初中数学人教版八年级上册12.1 全等三角形学案设计: 这是一份初中数学人教版八年级上册12.1 全等三角形学案设计,共12页。
初中数学人教版八年级上册12.2 三角形全等的判定学案: 这是一份初中数学人教版八年级上册12.2 三角形全等的判定学案,共5页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。
人教版八年级上册12.2 三角形全等的判定学案: 这是一份人教版八年级上册12.2 三角形全等的判定学案,共6页。学案主要包含了学习目标,要点梳理,典型例题,思路点拨,答案与解析,总结升华等内容,欢迎下载使用。