还剩7页未读,
继续阅读
所属成套资源:高中人教A版数学必修一
成套系列资料,整套一键下载
人教版高中数学第一册 第三章 章末整合课件PPT
展开
这是一份人教版高中数学第一册 第三章 章末整合课件PPT,共14页。
章末整合函数的概念与性质专题一专题二专题三专题一 求函数的值域例1求下列函数的值域:专题一专题二专题三专题一专题二专题三(3)(转化为关于x的二次方程,然后利用判别式求值域)已知函数式可变形为:yx2+2yx+3y=2x2+4x-7.(y-2)x2+2(y-2)x+3y+7=0,当y≠2时,将上式视为关于x的一元二次方程.∵x∈R,∴Δ≥0,即[2(y-2)]2-4(y-2)(3y+7)≥0.专题一专题二专题三方法技巧 求函数值域的方法(1)与二次函数有关的函数,可用配方法(注意定义域);用判别式法求值域,但要注意以下三个问题:一是检验二次项系数为零时,方程是否有解,若无解或使函数无意义,都应从值域中去掉该值;二是闭区间的边界值也要考查达到该值的x是否存在;三是分子分母必须为既约分式.专题一专题二专题三专题一专题二专题三专题二 利用函数单调性求函数的最值例2设a为实数,函数f(x)=x2+|x-a|+1,x∈R.(1)讨论函数f(x)的奇偶性;(2)求f(x)的最小值.解:(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时f(x)为偶函数.当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a).此时函数f(x)既不是奇函数,也不是偶函数.专题一专题二专题三专题一专题二专题三方法技巧 解含参数问题的基本思想是分类讨论,关键是确定讨论的标准,要求不重复,不遗漏.本题对于奇偶性的讨论标准是参数为零以及非零,分别对应偶函数及非奇非偶函数;对于最大值与最小值的讨论标准比较复杂,可以看为两类标准,一类是绝对值的零点(零点知识将在第四章学习),二是抛物线的对称轴与相应区间的位置,通常需借助函数的图象.专题一专题二专题三变式训练2已知函数f(x)=x2-2x+3在[0,a](a>0)上最大值为3,最小值为2,求实数a的取值范围.解:f(x)=x2-2x+3=(x-1)2+2.(1)当02.所以00,求a的取值范围.解:由奇函数的性质,-f(1-a2)=f(a2-1),即f(1-a)+f(1-a2)>0等价于f(1-a)>f(a2-1),又因为f(x)是定义在[-1,1]上的减函数,方法技巧 利用f(x)是奇函数和减函数的性质,去掉f,等价变换出a的不等式组.专题一专题二专题三变式训练3若f(x)是定义在实数集R上的偶函数,且在区间(-∞,0)上是增函数,又f(2a2+a+1)-x2,因为f(x)在区间(-∞,0)上是增函数,所以f(-x1)>f(-x2).又因为f(x)是偶函数,得f(x1)>f(x2),所以f(x)在(0,+∞)上是减函数,所以2a2+a+1和3a2-2a+1是两个正数,所以f(2a2+a+1)3a2-2a+1,解得0
章末整合函数的概念与性质专题一专题二专题三专题一 求函数的值域例1求下列函数的值域:专题一专题二专题三专题一专题二专题三(3)(转化为关于x的二次方程,然后利用判别式求值域)已知函数式可变形为:yx2+2yx+3y=2x2+4x-7.(y-2)x2+2(y-2)x+3y+7=0,当y≠2时,将上式视为关于x的一元二次方程.∵x∈R,∴Δ≥0,即[2(y-2)]2-4(y-2)(3y+7)≥0.专题一专题二专题三方法技巧 求函数值域的方法(1)与二次函数有关的函数,可用配方法(注意定义域);用判别式法求值域,但要注意以下三个问题:一是检验二次项系数为零时,方程是否有解,若无解或使函数无意义,都应从值域中去掉该值;二是闭区间的边界值也要考查达到该值的x是否存在;三是分子分母必须为既约分式.专题一专题二专题三专题一专题二专题三专题二 利用函数单调性求函数的最值例2设a为实数,函数f(x)=x2+|x-a|+1,x∈R.(1)讨论函数f(x)的奇偶性;(2)求f(x)的最小值.解:(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时f(x)为偶函数.当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a).此时函数f(x)既不是奇函数,也不是偶函数.专题一专题二专题三专题一专题二专题三方法技巧 解含参数问题的基本思想是分类讨论,关键是确定讨论的标准,要求不重复,不遗漏.本题对于奇偶性的讨论标准是参数为零以及非零,分别对应偶函数及非奇非偶函数;对于最大值与最小值的讨论标准比较复杂,可以看为两类标准,一类是绝对值的零点(零点知识将在第四章学习),二是抛物线的对称轴与相应区间的位置,通常需借助函数的图象.专题一专题二专题三变式训练2已知函数f(x)=x2-2x+3在[0,a](a>0)上最大值为3,最小值为2,求实数a的取值范围.解:f(x)=x2-2x+3=(x-1)2+2.(1)当02.所以00,求a的取值范围.解:由奇函数的性质,-f(1-a2)=f(a2-1),即f(1-a)+f(1-a2)>0等价于f(1-a)>f(a2-1),又因为f(x)是定义在[-1,1]上的减函数,方法技巧 利用f(x)是奇函数和减函数的性质,去掉f,等价变换出a的不等式组.专题一专题二专题三变式训练3若f(x)是定义在实数集R上的偶函数,且在区间(-∞,0)上是增函数,又f(2a2+a+1)
相关资料
更多