终身会员
搜索
    上传资料 赚现金

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第5讲 高效演练 分层突破学案

    立即下载
    加入资料篮
    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数    第5讲 高效演练 分层突破学案第1页
    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数    第5讲 高效演练 分层突破学案第2页
    还剩2页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第5讲 高效演练 分层突破学案

    展开

    这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第5讲 高效演练 分层突破学案,共4页。


    1.若函数f(x)=(2a-5)·ax是指数函数,则f(x)在定义域内( )
    A.为增函数 B.为减函数
    C.先增后减 D.先减后增
    解析:选A.由指数函数的定义知2a-5=1,解得a=3,所以f(x)=3x,所以f(x)在定义域内为增函数.
    2.设函数f(x)=x2-a与g(x)=ax(a>1且a≠2)在区间(0,+∞)上具有不同的单调性,则M=(a-1)0.2与N=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a)))eq \s\up12(0.1)的大小关系是( )
    A.M=N B.M≤N
    C.MN
    解析:选D.因为f(x)=x2-a与g(x)=ax(a>1且a≠2)在区间(0,+∞)上具有不同的单调性,所以a>2,所以M=(a-1)0.2>1,N=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a)))eq \s\up12(0.1)<1,所以M>N,故选D.
    3.已知f(x)=3x-b(2≤x≤4,b为常数)的图象经过点(2,1),则f(x)的值域为( )
    A.[9,81] B.[3,9]
    C.[1,9] D.[1,+∞)
    解析:选C.由f(x)过定点(2,1)可知b=2,所以f(x)=3x-2且在[2,4]上是增函数,f(x)min=f(2)=1,f(x)max=f(4)=9.
    4.已知函数y=kx+a的图象如图所示,则函数y=ax+k的图象可能是( )
    解析:选B.由函数y=kx+a的图象可得k<0,0-1,所以-15.已知函数f(x)=eq \b\lc\{(\a\vs4\al\c1(1-2-x,x≥0,,2x-1,x<0,))则函数f(x)是( )
    A.偶函数,在[0,+∞)内单调递增
    B.偶函数,在[0,+∞)内单调递减
    C.奇函数,且单调递增
    D.奇函数,且单调递减
    解析:选C.易知f(0)=0,当x>0时,f(x)=1-2-x,-f(x)=2-x-1,此时-x<0,则f(-x)=2-x-1=-f(x);当x<0时,f(x)=2x-1,-f(x)=1-2x,此时-x>0,则f(-x)=1-2-(-x)=1-2x=-f(x).即函数f(x)是奇函数,且单调递增,故选C.
    6.不等式2-x2+2x>eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(x+4)的解集为 .
    解析:不等式2-x2+2x >eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(x+4)可化为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(x2-2x)>eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up12(x+4),等价于x2-2x答案:{x|-17.若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=eq \f(1,9),则f(x)的单调递减区间是 .
    解析:由f(1)=eq \f(1,9)得a2=eq \f(1,9).
    又a>0,所以a=eq \f(1,3),因此f(x)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))eq \s\up12(|2x-4|).
    因为g(x)=|2x-4|在[2,+∞)上单调递增,所以f(x)的单调递减区间是[2,+∞).
    答案:[2,+∞)
    8.设偶函数g(x)=a|x+b|在(0,+∞)上单调递增,则g(a)与g(b-1)的大小关系是 .
    解析:由于g(x)=a|x+b|是偶函数,知b=0,
    又g(x)=a|x|在(0,+∞)上单调递增,得a>1.
    则g(b-1)=g(-1)=g(1),故g(a)>g(1)=g(b-1).
    答案:g(a)>g(b-1)
    9.已知函数f(x)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))eq \s\up12(|x|-a).
    (1)求f(x)的单调区间;
    (2)若f(x)的最大值等于eq \f(9,4),求a的值.
    解:(1)令t=|x|-a,则f(x)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))eq \s\up12(t),不论a取何值,t在(-∞,0]上单调递减,在(0,+∞)上单调递增,又y=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))eq \s\up12(t)是单调递减的,
    因此f(x)的单调递增区间是(-∞,0],
    单调递减区间是(0,+∞).
    (2)由于f(x)的最大值是eq \f(9,4),
    且eq \f(9,4)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,3)))eq \s\up12(-2),
    所以函数g(x)=|x|-a应该有最小值-2,从而a=2.
    10.(2020·福建养正中学模拟)已知函数f(x)=2x,g(x)=x2+2ax(-3≤x≤3).
    (1)若g(x)在[-3,3]上是单调函数,求a的取值范围;
    (2)当a=-1时,求函数y=f(g(x))的值域.
    解:(1)g(x)=(x+a)2-a2图象的对称轴为直线x=-a,因为g(x)在[-3,3]上是单调函数,所以-a≥3或-a≤-3,即a≤-3或a≥3.故a的取值范围为(-∞,-3]∪[3,+∞).
    (2)当a=-1时,f(g(x))=2eq \s\up8(x2-2x) (-3≤x≤3).
    令u=x2-2x,y=2u.
    因为x∈[-3,3],所以u=x2-2x=(x-1)2-1∈[-1,15].
    而y=2u是增函数,所以eq \f(1,2)≤y≤215,
    所以函数y=f(g(x))的值域是eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,2),215)).
    [综合题组练]
    1.(2020·辽宁大连第一次(3月)双基测试)函数y=eq \f(2x,2x+1)(x∈R)的值域为( )
    A.(0,+∞) B.(0,1)
    C.(1,+∞) D.eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,2)))
    解析:选B.y=eq \f(2x,2x+1)=eq \f(2x+1-1,2x+1)=1-eq \f(1,2x+1),
    因为2x>0,所以1+2x>1,
    所以0所以函数y的值域为(0,1),故选B.
    2.已知函数f(x)=ax(a>0,a≠1)在区间[-1,2]上的最大值为8,最小值为m.若函数g(x)=(3-10m)eq \r(x)是单调递增函数,则a= .
    解析:根据题意,得3-10m>0,解得m当a>1时,函数f(x)=ax在区间[-1,2]上单调递增,
    最大值为a2=8,解得a=2eq \r(2),最小值为m=a-1=eq \f(1,2\r(2))=eq \f(\r(2),4)>eq \f(3,10),不合题意,舍去;
    当0答案:eq \f(1,8)
    3.已知定义域为R的函数f(x)=eq \f(-2x+b,2x+1+a)是奇函数.
    (1)求a,b的值;
    (2)解关于t的不等式f(t2-2t)+f(2t2-1)<0.
    解:(1)因为f(x)是定义在R上的奇函数,所以f(0)=0,
    即eq \f(-1+b,2+a)=0,解得b=1,
    所以f(x)=eq \f(-2x+1,2x+1+a).
    又由f(1)=-f(-1)知eq \f(-2+1,4+a)=-eq \f(-\f(1,2)+1,1+a),解得a=2.
    (2)由(1)知f(x)=eq \f(-2x+1,2x+1+2)=-eq \f(1,2)+eq \f(1,2x+1).
    由上式易知f(x)在(-∞,+∞)上为减函数(此处可用定义或导数法证明函数f(x)在R上是减函数).
    又因为f(x)是奇函数,所以不等式f(t2-2t)+f(2t2-1)<0等价于f(t2-2t)<-f(2t2-1)=f(-2t2+1).
    所以t2-2t>-2t2+1即3t2-2t-1>0.
    解得t>1或t<-eq \f(1,3),所以该不等式的解集为eq \b\lc\{\rc\}(\a\vs4\al\c1(t|t>1或t<-\f(1,3))).

    相关学案

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第6讲 高效演练 分层突破学案:

    这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第6讲 高效演练 分层突破学案,共4页。

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第7讲 高效演练 分层突破学案:

    这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第7讲 高效演练 分层突破学案,共6页。

    2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第4讲 高效演练 分层突破学案:

    这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第4讲 高效演练 分层突破学案,共4页。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map