|学案下载
终身会员
搜索
    上传资料 赚现金
    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第3讲 第1课时 两角和与差的正弦、余弦和正切公式学案
    立即下载
    加入资料篮
    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形    第3讲 第1课时 两角和与差的正弦、余弦和正切公式学案01
    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形    第3讲 第1课时 两角和与差的正弦、余弦和正切公式学案02
    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形    第3讲 第1课时 两角和与差的正弦、余弦和正切公式学案03
    还剩10页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第3讲 第1课时 两角和与差的正弦、余弦和正切公式学案

    展开
    这是一份2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第3讲 第1课时 两角和与差的正弦、余弦和正切公式学案,共13页。学案主要包含了知识梳理,习题改编等内容,欢迎下载使用。


    一、知识梳理
    1.两角和与差的正弦、余弦和正切公式
    sin(α±β)=sin αcs β±cs αsin β;
    cs(α∓β)=cs αcs β±sin αsin β;
    tan(α±β)=eq \f(tan α±tan β,1∓tan αtan β)eq \b\lc\(\rc\)(\a\vs4\al\c1(α±β,α,β均不为kπ+\f(π,2),k∈Z)).
    2.二倍角的正弦、余弦、正切公式
    sin 2α=2sin αcs α;
    cs 2α=cs2α-sin2α=2cs2α-1=1-2sin2α;
    tan 2α=eq \f(2tan α,1-tan2α)eq \b\lc\(\rc\)(\a\vs4\al\c1(α,2α均不为kπ+\f(π,2),k∈Z)).
    3.三角函数公式的关系
    常用结论
    四个必备结论
    (1)降幂公式:cs2α=eq \f(1+cs 2α,2),sin2α=eq \f(1-cs 2α,2).
    (2)升幂公式:1+cs 2α=2cs2α,1-cs 2α=2sin2α.
    (3)tan α±tan β=tan(α±β)(1±tan αtan β),
    1+sin 2α=(sin α+cs α)2,
    1-sin 2α=(sin α-cs α)2,
    sin α±cs α=eq \r(2)sineq \b\lc\(\rc\)(\a\vs4\al\c1(α±\f(π,4))).
    (4)辅助角公式
    asin x+bcs x=eq \r(a2+b2)sin (x+φ),其中tan φ=eq \f(b,a).
    二、习题改编
    1.(必修4P137A组T5改编)已知sin eq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,3)))=eq \f(15,17),α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),\f(5,6)π)),则sin α的值为( )
    A.eq \f(8,17) B.eq \f(15\r(3)+8,34)
    C.eq \f(15-8\r(3),34) D.eq \f(15+8\r(3),34)
    解析:选D.因为α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),\f(5,6)π)),所以α-eq \f(π,3)∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,6),\f(π,2))),cseq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,3)))>0,cseq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,3)))=eq \r(1-\b\lc\(\rc\)(\a\vs4\al\c1(\f(15,17)))\s\up12(2))=eq \f(8,17),所以sin α=sineq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,3)))+\f(π,3)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,3)))cs eq \f(π,3)+cseq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,3)))sin eq \f(π,3)=eq \f(15,17)×eq \f(1,2)+eq \f(8,17)×eq \f(\r(3),2)=eq \f(15+8\r(3),34).故选D.
    2.(必修4P131练习T5改编)计算:sin 108°cs 42°-cs 72°·sin 42°= .
    解析:原式=sin(180°-72°)cs 42°-cs 72°sin 42°=sin 72°cs 42°-cs 72°sin 42°=sin(72°-42°)=sin 30°=eq \f(1,2).
    答案:eq \f(1,2)
    一、思考辨析
    判断正误(正确的打“√”,错误的打“×”)
    (1)两角和与差的正弦、余弦公式中的角α,β是任意角.( )
    (2)两角和与差的正切公式中的角α,β是任意角.( )
    (3)cs 80°cs 20°-sin 80°sin 20°=cs(80°-20°)=cs 60°=eq \f(1,2).( )
    (4)公式tan(α+β)=eq \f(tan α+tan β,1-tan αtan β)可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )
    (5)存在实数α,使tan 2α=2tan α.( )
    答案:(1)√ (2)× (3)× (4)× (5)√
    二、易错纠偏
    eq \a\vs4\al(常见误区)(1)不会用公式找不到思路;
    (2)不会合理配角出错.
    1.若cs α=-eq \f(4,5),α是第三象限的角,则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=( )
    A.-eq \f(\r(2),10) B.eq \f(\r(2),10)
    C.-eq \f(7\r(2),10) D.eq \f(7\r(2),10)
    解析:选C.因为cs α=-eq \f(4,5),α是第三象限的角,所以sin α=-eq \r(1-cs2α)=-eq \f(3,5),所以sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=sin α·cseq \f(π,4)+cs αsineq \f(π,4)=eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,5)))×eq \f(\r(2),2)+eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,5)))×eq \f(\r(2),2)=-eq \f(7\r(2),10).
    2.sin 15°+sin 75°的值是 .
    解析:sin 15°+sin 75°=sin 15°+cs 15°=eq \r(2)sin(15°+45°)=eq \r(2)sin 60°=eq \f(\r(6),2).
    答案:eq \f(\r(6),2)
    第1课时 两角和与差的正弦、余弦和正切公式
    三角函数公式的直接应用(师生共研)
    (1)(2019·高考全国卷Ⅱ)已知α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),2sin 2α=cs 2α+1,则sin α=( )
    A.eq \f(1,5) B.eq \f(\r(5),5)
    C.eq \f(\r(3),3) D.eq \f(2\r(5),5)
    (2)(一题多解)(2018·高考全国卷Ⅱ)已知tan(α-eq \f(5π,4))=eq \f(1,5),则tan α= .
    【解析】 (1)依题意得4sin αcs α=2cs2α,由α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),知cs α>0,所以2sin α=cs α.又sin2α+cs2α=1,所以sin2α+4sin2α=1,即sin2α=eq \f(1,5).又α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),所以sin α=eq \f(\r(5),5),选B.
    (2)法一:因为taneq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(5π,4)))=eq \f(1,5),所以eq \f(tan α-tan \f(5π,4),1+tan αtan\f(5π,4))=eq \f(1,5),即eq \f(tan α-1,1+tan α)=eq \f(1,5),解得tan α=eq \f(3,2).
    法二:因为taneq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(5π,4)))=eq \f(1,5),所以tan α=taneq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(α-\f(5π,4)))+\f(5π,4)))=eq \f(tan\b\lc\(\rc\)(\a\vs4\al\c1(α-\f(5π,4)))+tan\f(5π,4),1-tan\b\lc\(\rc\)(\a\vs4\al\c1(α-\f(5π,4)))tan\f(5π,4))=eq \f(\f(1,5)+1,1-\f(1,5)×1)=eq \f(3,2).
    【答案】 (1)B (2)eq \f(3,2)
    eq \a\vs4\al()
    利用三角函数公式时应注意的问题
    (1)首先要注意公式的结构特点和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.
    (2)应注意与同角三角函数基本关系、诱导公式的综合应用.
    (3)应注意配方法、因式分解和整体代换思想的应用.
    1.(2020·石家庄市模拟(一))已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=2cs(π-α),则taneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+α))=( )
    A.-3 B.3
    C.-eq \f(1,3) D.eq \f(1,3)
    解析:选A.因为cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)+α))=2cs(π-α),所以-sin α=-2cs α,所以tan α=2,所以taneq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+α))=eq \f(1+tan α,1-tan α)=-3,故选A.
    2.已知sin α=eq \f(1,3)+cs α,且α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),则eq \f(cs 2α,sin\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4))))的值为( )
    A.-eq \f(\r(2),3) B.eq \f(\r(2),3)
    C.-eq \f(1,3) D.eq \f(1,3)
    解析:选A.因为sin α=eq \f(1,3)+cs α,即sin α-cs α=eq \f(1,3),所以eq \f(cs 2α,sin\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4))))=eq \f(cs2α-sin2α,sin αcs\f(π,4)+cs αsin\f(π,4))=eq \f((cs α-sin α)(cs α+sin α),\f(\r(2),2)(sin α+cs α))=eq \f(-\f(1,3),\f(\r(2),2))=-eq \f(\r(2),3),故选A.
    3.(2020·长春市质量监测(二))直线y=2x绕原点顺时针旋转45°得到直线l,若l的倾斜角为α,则cs 2α的值为( )
    A.eq \f(8+\r(10),10) B.eq \f(8-\r(10),10)
    C.-eq \f(4,5) D.eq \f(4,5)
    解析:选D.设直线y=2x的倾斜角为β,则tan β=2,α=β-45°,
    所以tan α=tan(β-45°)=eq \f(tan β-tan 45°,1+tan 45°·tan β)=eq \f(1,3),
    cs 2α=cs2α-sin2α=eq \f(1-tan2α,1+tan2α)=eq \f(4,5),故选D.
    三角函数公式的逆用与变形应用(师生共研)
    (1)在△ABC中,若tan Atan B=tan A+tan B+1,则cs C的值为( )
    A.-eq \f(\r(2),2) B.eq \f(\r(2),2)
    C.eq \f(1,2) D.-eq \f(1,2)
    (2)(2018·高考全国卷Ⅱ)已知sin α+cs β=1,cs α+sin β=0,则sin(α+β)= .
    【解析】 (1)由tan Atan B=tan A+tan B+1,可得eq \f(tan A+tan B,1-tan Atan B)=-1,
    即tan(A+B)=-1,又(A+B)∈(0,π),
    所以A+B=eq \f(3π,4),则C=eq \f(π,4),cs C=eq \f(\r(2),2).
    (2)因为sin α+cs β=1,cs α+sin β=0,
    所以sin2α+cs2β+2sin αcs β=1 ①,
    cs2α+sin2β+2cs αsin β=0 ②,
    ①②两式相加可得sin2α+cs2α+sin2β+cs2β+2(sin αcs β+cs αsin β)=1,
    所以sin(α+β)=-eq \f(1,2).
    【答案】 (1)B (2)-eq \f(1,2)
    eq \a\vs4\al()
    (1)三角函数公式活用技巧
    ①逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;
    ②tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.
    (2)三角函数公式逆用和变形使用应注意的问题
    ①公式逆用时一定要注意公式成立的条件和角之间的关系;
    ②注意特殊角的应用,当式子中出现eq \f(1,2),1,eq \f(\r(3),2),eq \r(3)等这些数值时,一定要考虑引入特殊角,把“值变角”以便构造适合公式的形式.
    1.(1-tan215°)cs215°的值等于( )
    A.eq \f(1-\r(3),2) B.1
    C.eq \f(\r(3),2) D.eq \f(1,2)
    解析:选C.(1-tan215°)cs215°=cs215°-sin215°=cs 30°=eq \f(\r(3),2).
    2.已知sin 2α=eq \f(1,3),则cs2eq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,4)))=( )
    A.-eq \f(1,3) B.eq \f(1,3)
    C.-eq \f(2,3) D.eq \f(2,3)
    解析:选D.cs2eq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,4)))=eq \f(1+cs\b\lc\(\rc\)(\a\vs4\al\c1(2α-\f(π,2))),2)=eq \f(1,2)+eq \f(1,2)sin 2α=eq \f(1,2)+eq \f(1,2)×eq \f(1,3)=eq \f(2,3).
    3.(1+tan 20°)(1+tan 25°)= .
    解析:(1+tan 20°)(1+tan 25°)=1+tan 20°+tan 25°+tan 20°tan 25°=1+tan(20°+25°)(1-tan 20°tan 25°)+tan 20°tan 25°=2.
    答案:2
    两角和、差及倍角公式的灵活应用(多维探究)
    角度一 三角函数公式中变“角”
    (2020·黑龙江大庆实验中学考前训练)已知α,β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,4),π)),sin(α+β)=-eq \f(3,5),sineq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=eq \f(24,25),则cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))= .
    【解析】 由题意知,α+β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3π,2),2π)),sin(α+β)=-eq \f(3,5)<0,所以cs(α+β)=eq \f(4,5),因为β-eq \f(π,4)∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),\f(3π,4))),所以cseq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=-eq \f(7,25),cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=cseq \b\lc\[\rc\](\a\vs4\al\c1((α+β)-\b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))))=cs(α+β)cseq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))+sin(α+β)sineq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=-eq \f(4,5).
    【答案】 -eq \f(4,5)
    角度二 三角函数公式中变“名”
    求值:eq \f(1+cs 20°,2sin 20°)-sin 10°eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,tan 5°)-tan 5°)).
    【解】 原式=eq \f(2cs210°,2×2sin 10°cs 10°)-sin 10°eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(cs 5°,sin 5°)-\f(sin 5°,cs 5°)))
    =eq \f(cs 10°,2sin 10°)-sin 10°·eq \f(cs25°-sin25°,sin 5°cs 5°)
    =eq \f(cs 10°,2sin 10°)-sin 10°·eq \f(cs 10°,\f(1,2)sin 10°)
    =eq \f(cs 10°,2sin 10°)-2cs 10°=eq \f(cs 10°-2sin 20°,2sin 10°)
    =eq \f(cs 10°-2sin(30°-10°),2sin 10°)
    =eq \f(cs 10°-2\b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)cs 10°-\f(\r(3),2)sin 10°)),2sin 10°)=eq \f(\r(3)sin 10°,2sin 10°)=eq \f(\r(3),2).
    eq \a\vs4\al()
    三角函数公式应用的解题思路
    (1)角的转换:明确各个角之间的关系(包括非特殊角与特殊角、已知角与未知角),熟悉角的变换技巧,及半角与倍角的相互转化,如:2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,40°=60°-20°,eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)+α))+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=eq \f(π,2),eq \f(α,2)=2×eq \f(α,4)等.
    (2)名的变换:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.
    [提醒] 转化思想是实施三角恒等变换的主导思想,恒等变换前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.
    1.(2020·甘肃、青海、宁夏联考改编)若tan(α+2β)=2,tan β=-3,则tan(α+β)= ,tan α= .
    解析:因为tan(α+2β)=2,tan β=-3,
    所以tan(α+β)=tan(α+2β-β)=eq \f(tan(α+2β)-tan β,1+tan(α+2β)tan β)=eq \f(2-(-3),1+2×(-3))=-1.
    tan α=tan(α+β-β)=eq \f(-1-(-3),1+(-1)×(-3))=eq \f(1,2).
    答案:-1 eq \f(1,2)
    2.求4sin 20°+tan 20°的值.
    解:原式=4sin 20°+eq \f(sin 20°,cs 20°)
    =eq \f(2sin 40°+sin 20°,cs 20°)=eq \f(2sin (60°-20°)+sin 20°,cs 20°)
    =eq \f(\r(3)cs 20°-sin 20°+sin 20°,cs 20°)=eq \r(3).
    [基础题组练]
    1.计算-sin 133°cs 197°-cs 47°cs 73°的结果为( )
    A.eq \f(1,2) B.eq \f(\r(3),3)
    C.eq \f(\r(2),2) D.eq \f(\r(3),2)
    解析:选A.-sin 133°cs 197°-cs 47°cs 73°
    =-sin 47°(-cs 17°)-cs 47°sin 17°
    =sin(47°-17°)=sin 30°=eq \f(1,2).
    2.(2020·福建五校第二次联考)已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=eq \f(4,5),则sin 2α=( )
    A.eq \f(1,5) B.-eq \f(1,5)
    C.eq \f(7,25) D.-eq \f(7,25)
    解析:选C.法一:因为cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=eq \f(4,5),所以sin 2α=sineq \b\lc\[\rc\](\a\vs4\al\c1(\f(π,2)-2\b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))))=cs 2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=2cs2eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))-1=2×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,5)))eq \s\up12(2)-1=eq \f(7,25).故选C.
    法二:因为cseq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4)-α))=eq \f(4,5),所以eq \f(\r(2),2)(cs α+sin α)=eq \f(4,5),所以cs α+sin α=eq \f(4\r(2),5),平方得1+sin 2α=eq \f(32,25),得sin 2α=eq \f(7,25).故选C.
    3.(2020·陕西榆林模拟)已知eq \f(cs θ,sin θ)=3cs(2π+θ),|θ|A.eq \f(8\r(2),9) B.eq \f(2\r(2),3)
    C.eq \f(4\r(2),9) D.eq \f(2\r(2),9)
    解析:选C.因为eq \f(cs θ,sin θ)=3cs(2π+θ),
    所以eq \f(cs θ,sin θ)=3cs θ.
    又|θ|所以sin 2θ=2sin θcs θ=2×eq \f(1,3)×eq \f(2\r(2),3)=eq \f(4\r(2),9),
    故选C.
    4.(2020·武汉模拟)已知cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))=eq \f(1,4),则cs x+cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))=( )
    A.eq \f(\r(3),4) B.-eq \f(\r(3),4)
    C.eq \f(1,4) D.±eq \f(\r(3),4)
    解析:选A.因为cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))=eq \f(1,4),
    所以cs x+cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,3)))=cs x+eq \f(1,2)cs x+eq \f(\r(3),2)sin x
    =eq \r(3)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),2)cs x+\f(1,2)sin x))=eq \r(3)cseq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(π,6)))=eq \r(3)×eq \f(1,4)=eq \f(\r(3),4).
    故选A.
    5.(2020·湘东五校联考)已知sin(α+β)=eq \f(1,2),sin(α-β)=eq \f(1,3),则lgeq \r(5)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(tan α,tan β)))eq \s\up12(2)等于( )
    A.2 B.3
    C.4 D.5
    解析:选C.因为sin(α+β)=eq \f(1,2),sin(α-β)=eq \f(1,3),所以sin αcs β+cs αsin β=eq \f(1,2),sin αcs β-cs αsin β=eq \f(1,3),所以sin αcs β=eq \f(5,12),cs αsin β=eq \f(1,12),所以eq \f(tan α,tan β)=5,所以lgeq \r(5)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(tan α,tan β)))eq \s\up12(2)=lgeq \r(5)52=4.故选C.
    6.(2020·洛阳统考)已知sin α+cs α=eq \f(\r(5),2),则cs 4α= .
    解析:由sin α+cs α=eq \f(\r(5),2),得sin2α+cs2α+2sin αcs α=1+sin 2α=eq \f(5,4),所以sin 2α=eq \f(1,4),从而cs 4α=1-2sin22α=1-2×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,4)))eq \s\up12(2)=eq \f(7,8).
    答案:eq \f(7,8)
    7.(2020·安徽黄山模拟改编)已知角θ的终边经过点P(-x,-6),且cs θ=-eq \f(5,13),则sin θ= ,taneq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,4)))= .
    解析:由题知角θ的终边经过点P(-x,-6),所以cs θ=eq \f(-x,\r(x2+36))=-eq \f(5,13),解得x=eq \f(5,2),所以sin θ=eq \f(-6,\f(13,2))=-eq \f(12,13),tan θ=eq \f(-6,-\f(5,2))=eq \f(12,5),所以taneq \b\lc\(\rc\)(\a\vs4\al\c1(θ+\f(π,4)))=eq \f(tan θ+tan\f(π,4),1-tan θtan\f(π,4))=-eq \f(17,7).
    答案:-eq \f(12,13) -eq \f(17,7)
    8.已知sin(α-β)cs α-cs(β-α)sin α=eq \f(3,5),β是第三象限角,则sineq \b\lc\(\rc\)(\a\vs4\al\c1(β+\f(5π,4)))= .
    解析:依题意可将已知条件变形为
    sin[(α-β)-α]=-sin β=eq \f(3,5),所以sin β=-eq \f(3,5).
    又β是第三象限角,因此有cs β=-eq \f(4,5),
    所以sineq \b\lc\(\rc\)(\a\vs4\al\c1(β+\f(5π,4)))=-sineq \b\lc\(\rc\)(\a\vs4\al\c1(β+\f(π,4)))
    =-sin βcs eq \f(π,4)-cs βsin eq \f(π,4)=eq \f(7\r(2),10).
    答案:eq \f(7\r(2),10)
    9.已知tan α=2.
    (1)求taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))的值;
    (2)求eq \f(sin 2α,sin2α+sin αcs α-cs 2α-1)的值.
    解:(1)taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,4)))=eq \f(tan α+tan \f(π,4),1-tan αtan \f(π,4))=eq \f(2+1,1-2×1)=-3.
    (2)eq \f(sin 2α,sin2α+sin αcs α-cs 2α-1)=
    eq \f(2sin αcs α,sin2α+sin αcs α-2cs2α)=eq \f(2tan α,tan2α+tan α-2)=eq \f(2×2,4+2-2)=1.
    10.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点Peq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,5),-\f(4,5))).
    (1)求sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+π))的值;
    (2)若角β满足sin(α+β)=eq \f(5,13),求cs β的值.
    解:(1)由角α的终边过点Peq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,5),-\f(4,5))),得sin α=-eq \f(4,5),所以sin(α+π)=-sin α=eq \f(4,5).
    (2)由角α的终边过点Peq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(3,5),-\f(4,5))),得cs α=-eq \f(3,5),
    由sin(α+β)=eq \f(5,13),得cs(α+β)=±eq \f(12,13).
    由β=(α+β)-α得
    cs β=cs(α+β)cs α+sin(α+β)sin α,
    所以cs β=-eq \f(56,65)或cs β=eq \f(16,65).
    [综合题组练]
    1.若α,β都是锐角,且cs α=eq \f(\r(5),5),sin(α-β)=eq \f(\r(10),10),
    则cs β=( )
    A.eq \f(\r(2),2) B.eq \f(\r(2),10)
    C.eq \f(\r(2),2)或-eq \f(\r(2),10) D.eq \f(\r(2),2)或eq \f(\r(2),10)
    解析:选A.因为α,β都是锐角,且cs α=eq \f(\r(5),5),sin(α-β)=eq \f(\r(10),10),所以sin α=eq \f(2\r(5),5),cs(α-β)=eq \f(3\r(10),10),从而cs β=cs[α-(α-β)]=cs αcs(α-β)+sin αsin(α-β)=eq \f(\r(2),2),故选A.
    2.(2020·河南百校联盟联考)已知α为第二象限角,且tan α+tan eq \f(π,12)=2tan αtan eq \f(π,12)-2,则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(5π,6)))等于( )
    A.-eq \f(\r(10),10) B.eq \f(\r(10),10)
    C.-eq \f(3\r(10),10) D.eq \f(3\r(10),10)
    解析:选C.tan α+tan eq \f(π,12)=2tan αtan eq \f(π,12)-2⇒eq \f(tan α+tan \f(π,12),1-tan αtan \f(π,12))=-2⇒taneq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))=-2,因为α为第二象限角,所以sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))=eq \f(2\r(5),5),cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))=-eq \f(\r(5),5),则sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(5π,6)))=-sineq \b\lc\(\rc\)(\a\vs4\al\c1(α-\f(π,6)))=-sineq \b\lc\[\rc\](\a\vs4\al\c1(\b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))-\f(π,4)))=cseq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))sin eq \f(π,4)-sineq \b\lc\(\rc\)(\a\vs4\al\c1(α+\f(π,12)))cs eq \f(π,4)=-eq \f(3\r(10),10).
    3.已知函数f(x)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(π,12))),x∈R.
    (1)求feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,4)))的值;
    (2)若cs θ=eq \f(4,5),θ∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),求feq \b\lc\(\rc\)(\a\vs4\al\c1(2θ-\f(π,3)))的值.
    解:(1)feq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,4)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,4)+\f(π,12)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(π,6)))=-eq \f(1,2).
    (2)feq \b\lc\(\rc\)(\a\vs4\al\c1(2θ-\f(π,3)))=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2θ-\f(π,3)+\f(π,12)))
    =sineq \b\lc\(\rc\)(\a\vs4\al\c1(2θ-\f(π,4)))=eq \f(\r(2),2)(sin 2θ-cs 2θ).
    因为cs θ=eq \f(4,5),θ∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),所以sin θ=eq \f(3,5),
    所以sin 2θ=2sin θcs θ=eq \f(24,25),
    cs 2θ=cs2θ-sin2θ=eq \f(7,25),
    所以feq \b\lc\(\rc\)(\a\vs4\al\c1(2θ-\f(π,3)))=eq \f(\r(2),2)(sin 2θ-cs 2θ)
    =eq \f(\r(2),2)×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(24,25)-\f(7,25)))=eq \f(17\r(2),50).
    4.已知sin α+cs α=eq \f(3\r(5),5),α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,4))),sineq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=eq \f(3,5),β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4),\f(π,2))).
    (1)求sin 2α和tan 2α的值;
    (2)求cs(α+2β)的值.
    解:(1)由题意得(sin α+cs α)2=eq \f(9,5),
    即1+sin 2α=eq \f(9,5),所以sin 2α=eq \f(4,5).
    又2α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),所以cs 2α=eq \r(1-sin22α)=eq \f(3,5),
    所以tan 2α=eq \f(sin 2α,cs 2α)=eq \f(4,3).
    (2)因为β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,4),\f(π,2))),所以β-eq \f(π,4)∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,4))),
    又sineq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=eq \f(3,5),所以cseq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=eq \f(4,5),
    于是sin 2eq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=2sineq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))·cseq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=eq \f(24,25).
    又sin 2eq \b\lc\(\rc\)(\a\vs4\al\c1(β-\f(π,4)))=-cs 2β,所以cs 2β=-eq \f(24,25),
    又2β∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2),π)),所以sin 2β=eq \f(7,25),
    又cs2α=eq \f(1+cs 2α,2)=eq \f(4,5),α∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,4))),
    所以cs α=eq \f(2\r(5),5),sin α=eq \f(\r(5),5).
    所以cs(α+2β)=cs αcs 2β-sin αsin 2β
    =eq \f(2\r(5),5)×eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(24,25)))-eq \f(\r(5),5)×eq \f(7,25)
    =-eq \f(11\r(5),25).
    相关学案

    2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第3讲 第1课时 两角和与差的正弦、余弦和正切公式学案: 这是一份2023届高考一轮复习讲义(理科)第四章 三角函数、解三角形 第3讲 第1课时 两角和与差的正弦、余弦和正切公式学案,共16页。学案主要包含了知识梳理,习题改编等内容,欢迎下载使用。

    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第6讲 第1课时 高效演练 分层突破学案: 这是一份2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第6讲 第1课时 高效演练 分层突破学案,共6页。

    2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第3讲 第2课时 高效演练 分层突破学案: 这是一份2023届高考一轮复习讲义(文科)第四章 三角函数、解三角形 第3讲 第2课时 高效演练 分层突破学案,共6页。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map