2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第2课时 高效演练分层突破学案
展开1.(2020·辽宁沈阳一模)设函数f(x)=xex+1,则( )
A.x=1为f(x)的极大值点
B.x=1为f(x)的极小值点
C.x=-1为f(x)的极大值点
D.x=-1为f(x)的极小值点
解析:选D.由f(x)=xex+1,可得f′(x)=(x+1)ex,令f′(x)>0可得x>-1,即函数f(x)在(-1,+∞)上是增函数;令f′(x)<0可得x<-1,即函数f(x)在(-∞,-1)上是减函数,所以x=-1为f(x)的极小值点.故选D.
2.函数y=eq \f(x,ex)在[0,2]上的最大值是( )
A.eq \f(1,e) B.eq \f(2,e2)
C.0 D.eq \f(1,2\r(e))
解析:选A.易知y′=eq \f(1-x,ex),x∈[0,2],令y′>0,得0≤x<1,令y′<0,得1<x≤2,所以函数y=eq \f(x,ex)在[0,1]上单调递增,在(1,2]上单调递减,所以y=eq \f(x,ex)在[0,2]上的最大值是y|x=1=eq \f(1,e),故选A.
3.(2020·广东惠州4月模拟)设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=x·f′(x)的图象可能是( )
解析:选C.因为函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,所以当x>-2时,f′(x)>0;当x=-2时,f′(x)=0;当x<-2时,f′(x)<0.
所以当-2
4.(2020·河北石家庄二中期末)若函数f(x)=(1-x)(x2+ax+b)的图象关于点(-2,0)对称,x1,x2分别是f(x)的极大值点与极小值点,则x2-x1=( )
A.-eq \r(3) B.2eq \r(3)
C.-2eq \r(3) D.eq \r(3)
解析:选C.由题意可得f(-2)=3(4-2a+b)=0,
因为函数图象关于点(-2,0)对称,且f(1)=0,
所以f(-5)=0,
即f(-5)=6(25-5a+b)=0,
联立eq \b\lc\{(\a\vs4\al\c1(b-2a+4=0,,b-5a+25=0,))解得eq \b\lc\{(\a\vs4\al\c1(b=10,,a=7.))
故f(x)=(1-x)(x2+7x+10)=-x3-6x2-3x+10,
则f′(x)=-3x2-12x-3=-3(x2+4x+1),
结合题意可知x1,x2是方程x2+4x+1=0的两个实数根,且x1>x2,
故x2-x1=-|x1-x2|=-eq \r((x1+x2)2-4x1x2)=-eq \r((-4)2-4×1)=-2eq \r(3).
5.已知函数f(x)=x3+3x2-9x+1,若f(x)在区间[k,2]上的最大值为28,则实数k的取值范围为( )
A.[-3,+∞) B.(-3,+∞)
C.(-∞,-3) D.(-∞,-3]
解析:选D.由题意知f′(x)=3x2+6x-9,令f′(x)=0,解得x=1或x=-3,所以f′(x),f(x)随x的变化情况如下表:
又f(-3)=28,f(1)=-4,f(2)=3,f(x)在区间[k,2]上的最大值为28,所以k≤-3.
6.
函数f(x)=x3+bx2+cx+d的大致图象如图所示,则xeq \\al(2,1)+xeq \\al(2,2)=________.
解析:函数f(x)的图象过原点,所以d=0.又f(-1)=0且f(2)=0,即-1+b-c=0且8+4b+2c=0,解得b=-1,c=-2,所以函数f(x)=x3-x2-2x,所以f′(x)=3x2-2x-2,由题意知x1,x2是函数的极值点,所以x1,x2是f′(x)=0的两个根,所以x1+x2=eq \f(2,3),x1x2=-eq \f(2,3),所以xeq \\al(2,1)+xeq \\al(2,2)=(x1+x2)2-2x1x2=eq \f(4,9)+eq \f(4,3)=eq \f(16,9).
答案:eq \f(16,9)
7.若函数f(x)=x3-3ax在区间(-1,2)上仅有一个极值点,则实数a的取值范围为________.
解析:因为f′(x)=3(x2-a),所以当a≤0时,f′(x)≥0在R上恒成立,所以f(x)在R上单调递增,f(x)没有极值点,不符合题意;当a>0时,令f′(x)=0得x=±eq \r(a),当x变化时,f′(x)与f(x)的变化情况如下表所示:
因为函数f(x)在区间(-1,2)上仅有一个极值点,所以eq \b\lc\{(\a\vs4\al\c1(\r(a)<2,,-\r(a)≤-1))或eq \b\lc\{(\a\vs4\al\c1(-\r(a)>-1,,2≤\r(a),))解得1≤a<4.
答案:[1,4)
8.函数f(x)=x3-3a2x+a(a>0)的极大值是正数,极小值是负数,则a的取值范围是________.
解析:f′(x)=3x2-3a2=3(x+a)(x-a),
由f′(x)=0得x=±a,
当-a
所以f(x)的极大值为f(-a),极小值为f(a).
所以f(-a)=-a3+3a3+a>0且f(a)=a3-3a3+a<0.
解得a>eq \f(\r(2),2).
所以a的取值范围是eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),2),+∞)).
答案:eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),2),+∞))
9.已知函数f(x)=eq \f(1,3)x3-eq \f(1,2)(a2+a+2)x2+a2(a+2)x,a∈R.
(1)当a=-1时,求函数y=f(x)的单调区间;
(2)求函数y=f(x)的极值点.
解:(1)当a=-1时,f(x)=eq \f(1,3)x3-x2+x,
f′(x)=x2-2x+1=(x-1)2≥0,
所以函数f(x)是R上的增函数,单调递增区间为(-∞,+∞),无单调递减区间.
(2)因为f′(x)=x2-(a2+a+2)x+a2(a+2)=(x-a2)·[x-(a+2)],
①当a=-1或a=2时,a2=a+2,f′(x)≥0恒成立,函数f(x)为增函数,无极值点.
②当a<-1或a>2时,a2>a+2,
可得当x∈(-∞,a+2)时,f′(x)>0,函数f(x)为增函数;当x∈(a+2,a2)时,f′(x)<0,函数f(x)为减函数;当x∈(a2,+∞)时,f′(x)>0,函数f(x)为增函数.
所以当x=a+2时,函数f(x)有极大值f(a+2);当x=a2时,函数f(x)有极小值f(a2).
③当-1<a<2时,a2<a+2,
可得当x∈(-∞,a2)时,f′(x)>0,函数f(x)为增函数;当x∈(a2,a+2)时,f′(x)<0,函数f(x)为减函数;当x∈(a+2,+∞)时,f′(x)>0,函数f(x)为增函数.
所以当x=a+2时,函数f(x)有极小值f(a+2); 当x=a2时,函数f(x)有极大值f(a2).
综上所述,当a=-1或a=2时,f(x)无极值点;
当a<-1或a>2时,f(x)的极大值点为x=a+2,极小值点为x=a2;
当-1<a<2时,f(x)的极大值点为x=a2,极小值点为x=a+2.
10.已知函数f(x)=eq \f(ln x,x)-1.
(1)求函数f(x)的单调区间;
(2)设m>0,求函数f(x)在区间[m,2m]上的最大值.
解:(1)因为函数f(x)的定义域为(0,+∞),且f′(x)=eq \f(1-ln x,x2),
由eq \b\lc\{(\a\vs4\al\c1(f′(x)>0,,x>0))得0
所以函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞).
(2)①当eq \b\lc\{(\a\vs4\al\c1(2m≤e,,m>0)),
即0
②当m
所以f(x)max=f(e)=eq \f(ln e,e)-1=eq \f(1,e)-1;
③当m≥e时,[m,2m]⊆(e,+∞),函数f(x)在区间[m,2m]上单调递减,所以f(x)max=f(m)=eq \f(ln m,m)-1.
综上所述,当0
1.(2020·重庆模拟)已知函数f(x)=2ef′(e)ln x-eq \f(x,e)(e是自然对数的底数),则f(x)的极大值为( )
A.2e-1 B.-eq \f(1,e)
C.1 D.2ln 2
解析:选D.由题意知f′(x)=eq \f(2ef′(e),x)-eq \f(1,e),
所以f′(e)=eq \f(2ef′(e),e)-eq \f(1,e),f′(e)=eq \f(1,e),
所以f′(x)=eq \f(2,x)-eq \f(1,e),
令f′(x)=0,得x=2e,
所以f(x)在(0,2e)上单调递增,在(2e,+∞)上单调递减,所以f(x)的极大值为f(2e)=2ln(2e)-2=2ln 2,选D.
2.若函数f(x)=eq \f(1,3)x3+x2-eq \f(2,3)在区间(a,a+5)上存在最小值,则实数a的取值范围是( )
A.[-5,0) B.(-5,0)
C.[-3,0) D.(-3,0)
解析:选C.由题意,f′(x)=x2+2x=x(x+2),故f(x)在(-∞,-2),(0,+∞)上是增函数,在(-2,0)上是减函数,作出其大致图象如图所示,
令eq \f(1,3)x3+x2-eq \f(2,3)=-eq \f(2,3)得,x=0或x=-3,则结合图象可知,eq \b\lc\{(\a\vs4\al\c1(-3≤a<0,,a+5>0,))解得a∈[-3,0).
3.(2020·河南驻马店模拟)已知函数f(x)=eq \b\lc\{(\a\vs4\al\c1(2x3+3x2+2,x≤0,,eax,x>0))在[-2,2]上的最大值为3,则实数a的取值范围是( )
A.(ln 3,+∞) B.eq \b\lc\[\rc\](\a\vs4\al\c1(0,\f(1,2)ln 3))
C.eq \b\lc\(\rc\](\a\vs4\al\c1(-∞,\f(1,2)ln 3)) D.(-∞,ln 3]
解析:选C.由题意,当x≤0时,f(x)=2x3+3x2+2,可得f′(x)=6x2+6x=6x(x+1),所以当-2≤x<-1时,f′(x)>0,函数f(x)在[-2,-1)上单调递增,当-1
解析:因为f(x)=(x2+ax-1)ex-1,所以f′(x)=(2x+a)ex-1+(x2+ax-1)ex-1=[x2+(a+2)x+a-1]ex-1.因为x=-2是函数f(x)=(x2+ax-1)ex-1的极值点,所以-2是x2+(a+2)x+a-1=0的根,所以a=-1,f′(x)=(x2+x-2)ex-1=(x+2)(x-1)ex-1.令f′(x)>0,解得x<-2或x>1,令f′(x)<0,解得-2
5.(2020·石家庄市质量检测)已知函数f(x)=aex-sin x,其中a∈R,e为自然对数的底数.
(1)当a=1时,证明:∀x∈[0,+∞),f(x)≥1;
(2)若函数f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上存在极值,求实数a的取值范围.
解:(1)证明:当a=1时,f(x)=ex-sin x,于是f′(x)=ex-cs x.
当x∈[0,+∞)时,ex>1且cs x≤1.
故当x∈[0,+∞)时,ex-cs x>0,即f′(x)>0.
所以函数f(x)=ex-sin x为[0,+∞)上的增函数,因为f(0)=1,
所以∀x∈[0,+∞),f(x)≥1.
(2)法一:由f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上存在极值,得f′(x)=aex-cs x在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上存在零点.
①当a∈(0,1)时,f′(x)=aex-cs x为eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上的增函数,
注意到f′(0)=a-1<0,f′eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)))=a·eeq \s\up6(\f(π,2))>0,
所以,存在唯一实数x0∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),使得f′(x0)=0成立.
当x∈(0,x0)时,f′(x)<0,f(x)为(0,x0)上的减函数;
当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(x0,\f(π,2)))时,f′(x)>0,f(x)为eq \b\lc\(\rc\)(\a\vs4\al\c1(x0,\f(π,2)))上的增函数.
所以x0eq \b\lc\(\rc\)(\a\vs4\al\c1(x0∈\b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))))为函数f(x)的极小值点.
②当a≥1时,f′(x)=aex-cs x≥ex-cs x>0在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上恒成立.
所以f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上单调递增,
所以f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上没有极值.
③当a≤0时,f′(x)=aex-cs x<0在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上恒成立,
所以f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上单调递减,
所以f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上没有极值.
综上所述,若f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上存在极值,则实数a的取值范围是(0,1).
法二:由函数f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上存在极值,
得f′(x)=aex-cs x在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上存在零点,
即a=eq \f(cs x,ex)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上有解.
设g(x)=eq \f(cs x,ex),x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),则g′(x)=eq \f(-(sin x+cs x),ex)<0在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上恒成立,所以g(x)为eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上的减函数.所以g(x)的值域为(0,1),所以当实数a∈(0,1)时,f′(x)=aex-cs x在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上存在零点.
下面证明,当a∈(0,1)时,函数f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上存在极值.
事实上,当a∈(0,1)时,f′(x)=aex-cs x为eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上的增函数,
注意到f′(0)=a-1<0,f′eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(π,2)))=a·eeq \s\up6(\f(π,2))>0,所以存在唯一实数x0∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),
使得f′(x0)=0成立.
当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,x0))时,f′(x)<0,f(x)为(0,x0)上的减函数;
当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(x0,\f(π,2)))时,f′(x)>0,f(x)为eq \b\lc\(\rc\)(\a\vs4\al\c1(x0,\f(π,2)))上的增函数.
即x0eq \b\lc\(\rc\)(\a\vs4\al\c1(x0∈\b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))))为函数f(x)的极小值点.
综上所述,若函数f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2)))上存在极值,则实数a的取值范围是(0,1).
6.已知函数f(x)=aln x+eq \f(1,x)(a>0).
(1)求函数f(x)的单调区间和极值;
(2)是否存在实数a,使得函数f(x)在[1,e]上的最小值为0?若存在,求出a的值;若不存在,请说明理由.
解:由题意,知函数的定义域为{x|x>0},f′(x)=eq \f(a,x)-eq \f(1,x2)(a>0).
(1)由f′(x)>0,解得x>eq \f(1,a),
所以函数f(x)的单调递增区间是eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a),+∞));
由f′(x)<0,解得x
所以当x=eq \f(1,a)时,函数f(x)有极小值feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a)))=aln eq \f(1,a)+a=a-aln a.
(2)不存在.理由如下:
由(1)可知,当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,a)))时,函数f(x)单调递减;
当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a),+∞))时,函数f(x)单调递增.
①若0
②若1
③若eq \f(1,a)>e,即0综上所述,不存在这样的实数a,使得函数f(x)在[1,e]上的最小值为0.
x
(-∞,-3)
-3
(-3,1)
1
(1,+∞)
f′(x)
+
0
-
0
+
f(x)
极大值
极小值
x
(-∞,-eq \r(a))
-eq \r(a)
(-eq \r(a),eq \r(a))
eq \r(a)
(eq \r(a),+∞)
f′(x)
+
0
-
0
+
f(x)
极大值
极小值
2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第1课时 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第1课时 高效演练分层突破学案,共7页。
2023届高考一轮复习讲义(理科)第三章 导数及其应用 第3讲 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第三章 导数及其应用 第3讲 高效演练分层突破学案,共6页。
2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第4课时 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第4课时 高效演练分层突破学案,共4页。