初中数学人教版八年级下册18.2.1 矩形授课ppt课件
展开
这是一份初中数学人教版八年级下册18.2.1 矩形授课ppt课件,共18页。PPT课件主要包含了归纳总结,形象图,你能证明吗,证一证,轴对称图形,典例精析,练一练等内容,欢迎下载使用。
一、知识与技能:理解矩形的概念,知道矩形与平行四边形的区别与联系。会证明矩形的性质,用矩形的性质解决简单的问题。(重点、难点)二、过程与方法:通过观察、探究、归纳等活动中,加深学生对知识的理解与掌握,增强数学应用意识。三、情感态度与价值观:培养学生由一般到特殊的数学思维以及逻辑思维能力。
思考 长方形跟我们前面学习的平行四边形有什么关系?
你还能举出其他的例子吗?
观察下面图形,长方形在生活中无处不在.
活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.
定义:有一个角是直角的平行四边形叫做矩形. 也叫做长方形.
平行四边形不一定是矩形.
思考 因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?
可以从边,角,对角线等方面来考虑.
活动2:准备素材:直尺、量角器、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果.
(2)根据测量的结果,你有什么猜想?
猜想1 矩形的四个角都是直角.
猜想2 矩形的对角线相等.
证明:∵四边形ABCD是矩形, ∴∠B=∠D,∠C=∠A, AB∥DC. ∴∠B+∠C=180°. 又∵∠B = 90°, ∴∠C = 90°. ∴∠B=∠C=∠D=∠A =90°.
如图,四边形ABCD是矩形,∠B=90°.求证: ∠B=∠C=∠D=∠A=90°.
证明:∵四边形ABCD是矩形,∴AB=DC,∠ABC=∠DCB=90°,在△ABC和△DCB中,∵AB=DC,∠ABC=∠DCB,BC= CB,∴△ABC≌△DCB.∴AC=DB.
如图,四边形ABCD是矩形,∠ABC=90°,对角线AC与DB相交于点O.求证:AC=DB.
活动3 请同学们拿出准备好的矩形纸片,折一折,观察并思考. 矩形是不是轴对称图形?如果是,那么对称轴有几条?
矩形的性质:对称性: .对称轴:.
矩形除了具有平行四边形所有性质,还具有的性质有:矩形的四个角都是直角.矩形的对角线相等.矩形是轴对称图形,具有两条对称轴.
几何语言描述:∵四边形ABCD是矩形∴∠ABC=∠BCD=∠CDA=∠DAB =90°,AC=DB.
例1 如图,在矩形ABCD中,两条对角线AC,BD相交于点O,∠AOB=60°,AB=4 ,求矩形对角线的长.
解:∵四边形ABCD是矩形. ∴AC = BD, OA= OC= AC,OB = OD = BD , ∴OA = OB. 又∵∠AOB=60°, ∴△OAB是等边三角形, ∴OA=AB=4, ∴AC=BD=2OA=8.
矩形的对角线相等且互相平分
例2 如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知∠1=∠2,∴∠1=∠3,∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2,解得x=5,即DE=5.∴S△BED= DE·AB= ×5×4=10.
矩形的折叠问题常与勾股定理结合考查
1.如图,在矩形ABCD中,对角线AC,BD交于点O, 下列说法错误的是 ( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OB
2.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的_________.
3.如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE=3:1,求∠BAE和∠EAO的度数.
解:∵四边形ABCD是矩形,∴∠DAB=90°,AO= AC,BO= BD,AC=BD,∴∠BAE+∠DAE=90°,AO=BO.又∵∠DAE:∠BAE=3:1,∴∠BAE=22.5°,∠DAE=67.5°.∵AE⊥BD,∴∠ABE=90°-∠BAE=90°-22.5°=67.5°,∴∠OAB=∠ABE=67.5°∴∠EAO=67.5°-22.5°=45°.
相关课件
这是一份初中数学人教版八年级下册18.2.1 矩形集体备课课件ppt,共24页。PPT课件主要包含了引入新课,矩形的性质,试给出数学证明,∴ACBD,证一证,练一练,知识回顾,从一般到特殊,矩形对边平行且相等,定义判定等内容,欢迎下载使用。
这是一份数学人教版18.2.1 矩形图文ppt课件,共23页。PPT课件主要包含了温故而知新,对边平行且相等,对角相等邻角互补,对角线互相平分,一个角是直角,又∵∠A90°,求证ACBD,∠AOB60°,小试牛刀,特殊化等内容,欢迎下载使用。
这是一份人教版八年级下册第十八章 平行四边形18.2 特殊的平行四边形18.2.1 矩形图片ppt课件,共26页。PPT课件主要包含了矩形特殊的性质,从角上看,从对角线上看,矩形的性质等内容,欢迎下载使用。