上海市青浦区2022届初三一模数学试卷
展开这是一份上海市青浦区2022届初三一模数学试卷,共9页。试卷主要包含了1米),8米.等内容,欢迎下载使用。
青浦区2021学年第一学期九年级数学学科练习卷
(完成时间:100分钟 满分:150分) 2022.1
考生注意:
1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.
2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
一、选择题:(本大题共6题,每小题4分,满分24分)
[每题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]
1.下列图形,一定相似的是( )
(A)两个直角三角形;(B)两个等腰三角形;(C)两个等边三角形;(D)两个菱形.
2.如图,已知AB// CD//EF,它们依次交直线、于点A、C、E
和点B、D、F.如果AC∶CE =2∶3,BD=4,那么BF等于( )
(A)6; (B)8; (C)10; (D)12.
3.在Rt△ABC中,∠C=90º,那么等于( )
(A); (B); (C) ; (D).
4.如图,点D、E分别在△ABC的边AB、BC上,下列条件中
一定能判定DE∥AC的是( )
(A); (B); (C); (D).
5.如果(、均为非零向量),那么下列结论错误的是( )
(A); (B) ∥; (C); (D) 与方向相同.
6.如图,在平行四边形ABCD中,点E在边BA的延长线上,联结EC,交边AD于
点F,则下列结论一定正确的是( )
(A); (B); (C); (D).
二、填空题:(本大题共12题,每小题4分,满分48分)[请将结果直接填入答题纸的相应位置]
7. 已知线段b是线段a、c的比例中项,且a = 1,b = 3,那么c = ▲ .
8. 计算:= ▲ .
9. 如果两个相似三角形的周长比为2∶3,那么它们的对应高的比为 ▲ .
10.二次函数的图像有最 ▲ 点.(填“高”或“低”)
11.将抛物线向下平移2个单位,所得抛物线的表达式是 ▲ .
12.如果抛物线(其中a、b、c是常数,且a≠0)在
对称轴左侧的部分是下降的,那么a ▲ 0.(填“<”或“>”)
13.在△ABC中,∠C=90º,如果tan∠A=2,AC=3,那么BC= ▲ .
14.如图,点G为等边三角形ABC的重心,联结GA,如果AG=2,
那么BC= ▲ .
15.如图,如果小华沿坡度为的坡面由A到B行走了8米,
那么他实际上升的高度为 ▲ 米.
16.如图,在边长相同的小正方形组成的网格中,点A、B、O都
在这些小正方形的顶点上,那么sin∠AOB的值为 ▲ .
17.如图,在矩形ABCD中,∠BCD的角平分线CE与边AD交于
点E,∠AEC的角平分线与边CB的延长线交于点G,与边AB
交于点F,如果AB=,AF=2BF,那么GB= ▲ .
18.如图,一次函数的图像与x轴,y轴分别
相交于点A,点B,将它绕点O逆时针旋转90°后,与x轴相交
于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函
数关联的二次函数.如果一次函数的关联二次
函数是(),那么这个一次函数的解析
式为 ▲ .
三、解答题(本大题共7题,满分78分) [请将解题过程填入答题纸的相应位置]
19.(本题满分10分)
计算:.
20.(本题满分10分, 第(1)小题5分,第(2)小题5分)
如图,在平行四边形ABCD中,点E在边AD上, CE、BD相交于点F,BF=3DF.
(1)求AE∶ED的值;
(2)如果,,试用、表示向量.
21.(本题满分10分, 第(1)小题5分,第(2)小题5分)
如图,在△ABC中,点D是BC的中点,联结AD,AB=AD,BD=4,.
(1)求AB的长;
(2)求点C到直线AB的距离.
22.(本题满分10分)
如图,某校的实验楼对面是一幢教学楼,小张在实验楼的窗口C(AC∥BD)处测得教学楼
顶部D的仰角为27°,教学楼底部B的俯角为13°,量得实验楼与教学楼之间的距离AB=20米.求教学楼BD(BD⊥AB)的高度.(精确到0.1米)
(参考数据:sin13°≈0.22,cos13°≈0.97,tan13°≈0.23,
sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)
23.(本题满分12分,第(1)小题6分,第(2)小题6分)
已知:如图,在四边形ABCD中,AC、BD相交于点E,∠ABD=∠CBD,.
(1)求证:△AEB∽△DEC;
(2)求证:.
24.(本题满分12分, 其中第(1)小题4分,第(2)小题4分,第(3)小题4分)
如图,在平面直角坐标系xOy中,抛物线与x轴交于点A(-1,0)和
点B(3,0),与y轴交于点C,顶点为点D.
(1)求该抛物线的表达式及点C的坐标;
(2)联结BC、BD,求∠CBD的正切值;
(3)若点P为x轴上一点,当△BDP与△ABC相似时,求点P的坐标.
25.(本题满分14分,其中第(1)小题4分,第(2)小题4分,第(3)小题6分)
在四边形ABCD中,AD∥BC,AB=,AD=2,DC=,tan∠ABC=2(如图).点E是
射线AD上一点,点F是边BC上一点,联结BE、EF,且∠BEF=∠DCB.
(1)求线段BC的长;
(2)当FB=FE时,求线段BF的长;
(3)当点E在线段AD的延长线上时,设DE=x,BF=y,求y关于x的函数解析式,并写出x的取值范围.
2021学年第一学期九年级数学学科练习卷
参考答案及评分说明2022.1
一、选择题:
1.C; 2.C; 3.A; 4.B; 5.D; 6.D.
二、填空题:
7.; 8.; 9.; 10.高; 11.; 12.;
13.; 14.; 15.; 16.; 17.; 18..
三、解答题:
19.解:原式=.····························································(4分)
=.························································(4分)
=.························································(2分)
20.解:(1)∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC.···········································(2分)
∴.······························································(1分)
∵BF=3DF,∴.
∴.·······················································(1分)
∴.
∴AE∶ED=2.················································(1分)
(2)∵AE∶ED=2∶1,∴.
∵,
∴.·······················································(1分)
∵,
∴.·······················································(1分)
∵AD//BC,∴. ··············································(1分)
∵BF=3DF,∴.∴.
∴.·······················································(1分)
∴.·······················································(1分)
21.解:(1)∵过点A作AH⊥BD,垂足为点H.
∵AB=AD, ∴BH=HD.·········································(1分)
∵点D是BC的中点, ∴BD=CD.
∵BD=4,∴CD=4.
∴HC=6.····················································(1分)
∵,∴,∴.················································(1分)
∵,
∴.·······················································(2分)
(2)过点C作CG⊥BA,交BA的延长线于点G. ··························(1分)
∵,······················································(2分)
∴. ······················································(1分)
∴.
∴点C到直线AB的距离为.······································(1分)
22.解: 过点C作CH⊥BD,垂足为点H.·········································(1分)
由题意,得∠DCH=27°,∠HCB=13°,AB=CH=20(米).
在Rt△DHC中,∵,∴.···········································(4分)
在Rt△HCB中,∵,∴.············································(4分)
∴BD =HD+HB10.2 +4.6=14.8(米).···································(1分)
答:教学楼BD的高度约为14.8米.
23.证明:(1)∵,
∴.······················································(1分)
又∵∠CDE=∠BDC,∴△DCE∽△DBC.·····························(1分)
∴∠DCE=∠DBC.·············································(1分)
∵∠ABD=∠DBC,
∴∠DCE=∠ABD.·············································(1分)
又∵∠AEB=∠DEC,∴△AEB ∽△DEC.·····························(2分)
(2)∵△AEB ∽△DEC,∴.·········································(1分)
又∵∠AED=∠BEC,∴△AED ∽△BEC.·····························(1分)
∴∠ADE=∠BCE.·············································(1分)
又∵∠ABD=∠DBC,∴△BDA ∽△BCE.····························(1分)
∴.······················································(1分)
∴. ······················································(1分)
24.解:(1)将A(-1,0)、B(3,0)代入,得
解得: (2分)
所以,. (1分)
当x=0时,.∴点C的坐标为(0,-3).····························(1分)
(2)∵,∴点D的坐标为(1,-4).··································(1分)
∵B(3,0)、C(0,-3)、D(1,-4),∴BC=,DC=,BD=.
∴. (1分)
∴∠BCD=90°. ··············································(1分)
∴tan∠CBD=. (1分)
(3)∵tan∠ACO=,∴∠ACO=∠CBD.···································(1分)
∵OC =OB,∴∠OCB=∠OBC=45°.∴∠ACO+∠OCB =∠CBD+∠OBC.
即:∠ACB =∠DBO.············································(1分)
∴当△BDP与△ABC相似时,点P在点B左侧.
(i)当时,
∴.∴BP=6.∴P(-3,0).································(1分)
(ii)当时,
∴.∴BP=.∴P(-,0).·································(1分)
综上,点P的坐标为(-3,0)或(-,0).
25.解:(1)过点A、D分别作AH⊥BC、DG⊥BC,垂足分别为点H、点G.
可得:AD=HG=2,AH=DG.∵tan∠ABC=2,AB=,
∴AH=2,BH=1.··············································(2分)
∴DG=2.
∵DC=,∴CG=.··············································(1分)
∴BC=BH+HG+GC=1+2+4=7.······································(1分)
(2)过点E作EM⊥BC,垂足为点M.可得EM=2.
由(1)得,tan∠C=.
∵FB=FE,∴∠FEB=∠FBE.
∵∠FEB=∠C,∴∠FBE=∠C.·······································(1分)
∴tan∠FBE=.∴,∴BM=4.·····································(1分)
∵,∴.····················································(1分)
∴BF=.·····················································(1分)
(3)过点E作EN//DC,交BC的延长线于点N.
∵DE//CN,∴四边形DCNE是平行四边形.
∴DE=CN,∠DCB=∠ENB.
∵∠FEB=∠DCB,∴∠FEB=∠ENB.···································(1分)
又∵∠EBF=∠NBE,
∴△BEF ∽△BNE.············································(1分)
∴.∴.····················································(1分)
过点E作EQ⊥BC,垂足为点Q.可得EQ=2,BQ=x+3.
∴.························································(1分)
∴.
∴. (2分)
相关试卷
这是一份2024年上海市青浦区中考数学二模试卷+,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2024年上海市青浦区初三二模数学试卷,共4页。
这是一份2024上海市青浦区初三二模数学试卷,共4页。