终身会员
搜索
    上传资料 赚现金
    2022年高考数学(理数)一轮复习课时作业36《二元一次不等式(组)与简单的线性规划问题》(教师版)
    立即下载
    加入资料篮
    2022年高考数学(理数)一轮复习课时作业36《二元一次不等式(组)与简单的线性规划问题》(教师版)01
    2022年高考数学(理数)一轮复习课时作业36《二元一次不等式(组)与简单的线性规划问题》(教师版)02
    2022年高考数学(理数)一轮复习课时作业36《二元一次不等式(组)与简单的线性规划问题》(教师版)03
    还剩4页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年高考数学(理数)一轮复习课时作业36《二元一次不等式(组)与简单的线性规划问题》(教师版)

    展开
    这是一份2022年高考数学(理数)一轮复习课时作业36《二元一次不等式(组)与简单的线性规划问题》(教师版),共7页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    一、选择题
    1.不等式y(x+y-2)≥0在平面直角坐标系中表示的区域(用阴影部分表示)是( C )
    解析:由y(x+y-2)≥0,得eq \b\lc\{\rc\ (\a\vs4\al\c1(y≥0,,x+y-2≥0))
    或eq \b\lc\{\rc\ (\a\vs4\al\c1(y≤0,,x+y-2≤0,))所以不等式y(x+y-2)≥0在平面直角坐标系中表示的区域是C项.
    2.已知点(-3,-1)和(4,-6)在直线3x-2y-a=0的两侧,则实数a的取值范围为( A )
    A.(-7,24) B.(-∞,-7)∪(24,+∞)
    C.(-24,7) D.(-∞,-24)∪(7,+∞)
    解析:由题意可知(-9+2-a)(12+12-a)<0,所以(a+7)·(a-24)<0,所以-73.设变量x,y满足约束条件eq \b\lc\{\rc\ (\a\vs4\al\c1(,x+y≤5,,2x-y≤4,,-x+y≤1,,y≥0,))则目标函数z=3x+5y的最大值为( C )
    A.6 B.19
    C.21 D.45
    解析:不等式组表示的平面区域如图中阴影部分所示,作出直线y=-eq \f(3,5)x,平移该直线,当经过点C时,z取得最大值,由eq \b\lc\{\rc\ (\a\vs4\al\c1(-x+y=1,,x+y=5))得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=2,,y=3,))即C(2,3),所以zmax=3×2+5×3=21,故选C.
    4.在平面直角坐标系xOy中,M为不等式组eq \b\lc\{\rc\ (\a\vs4\al\c1(3x-y-6≤0,,x-y+2≥0,,x≥0,y≥0))所表示的区域上一动点,已知点A(-1,2),则直线AM斜率的最小值为( B )
    A.-eq \f(2,3) B.-2 C.0 D.eq \f(4,5)
    解析:作出不等式组eq \b\lc\{\rc\ (\a\vs4\al\c1(3x-y-6≤0,,x-y+2≥0,,x≥0,y≥0))对应的平面区域如图四边形OBCD及其内部,其中B(2,0),C(4,6),D(0,2).
    点A(-1,2),当M位于O时,AM的斜率最小,此时AM的斜率k=eq \f(2-0,-1-0)=-2,故选B.
    5.在区间(0,2)内随机取一个实数a,则满足eq \b\lc\{\rc\ (\a\vs4\al\c1(2x-y≥0,,y≥0,,x-a≤0))的点(x,y)构成区域的面积大于1的概率是( C )
    A.eq \f(1,8) B.eq \f(1,4)
    C.eq \f(1,2) D.eq \f(3,4)
    解析:作出约束条件eq \b\lc\{\rc\ (\a\vs4\al\c1(2x-y≥0,,y≥0,,x-a≤0))表示的平面区域如图中阴影部分所示,则阴影部分的面积S=eq \f(1,2)×a×2a=a2>1,∴16.不等式组eq \b\lc\{\rc\ (\a\vs4\al\c1(x-y≥1,,x+2y≤2))的解集记为D.有下面四个命题:
    p1:∀(x,y)∈D,x-2y≥2;
    p2:∃(x,y)∈D,x-2y≥3;
    p3:∀(x,y)∈D,x-2y≥eq \f(2,3);
    p4:∃(x,y)∈D,x-2y≤-2.
    其中的真命题是( A )
    A.p2,p3 B.p1,p4
    C.p1,p2 D.p1,p3
    解析:不等式组表示的可行域为如图所示的阴影部分,
    由eq \b\lc\{\rc\ (\a\vs4\al\c1(x-y=1,,x+2y=2,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=\f(4,3),,y=\f(1,3),))所以M(eq \f(4,3),eq \f(1,3)).
    由图可知,当直线z=x-2y过点M(eq \f(4,3),eq \f(1,3))处时,z取得最小值,且zmin=eq \f(4,3)-2×eq \f(1,3)=eq \f(2,3),
    所以真命题是p2,p3,故选A.
    7.若实数x,y满足eq \b\lc\{\rc\ (\a\vs4\al\c1(2x-y≥0,,y≥x,,y≥-x+b,))且z=2x+y的最小值为4,则实数b的值为( D )
    A.1 B.2
    C.eq \f(5,2) D.3
    解析:作出不等式组表示的平面区域如图阴影所示,由图可知z=2x+y在点A处取得最小值,且由eq \b\lc\{\rc\ (\a\vs4\al\c1(2x+y=4,,2x-y=0,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=1,,y=2,))∴A(1,2).
    又由题意可知A在直线y=-x+b上,∴2=-1+b,解得b=3,故选D.
    二、填空题
    8.若变量x,y满足约束条件eq \b\lc\{\rc\ (\a\vs4\al\c1(2x+y+3≥0,,x-2y+4≥0,,x-2≤0,))则z=x+eq \f(1,3)y的最大值是3.
    解析:解法1:作出不等式组表示的平面区域如图中阴影部分所示,画出直线y=-3x,平移该直线,由图可知当平移后的直线经过直线x=2与直线x-2y+4=0的交点(2,3)时,z=x+eq \f(1,3)y取得最大值,即zmax=2+eq \f(1,3)×3=3.
    解法2:易知z=x+eq \f(1,3)y在可行域的顶点处取得最大值,
    由eq \b\lc\{\rc\ (\a\vs4\al\c1(2x+y+3=0,,x-2y+4=0,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=-2,,y=1,))代入z=x+eq \f(1,3)y,可得z=-eq \f(5,3);
    由eq \b\lc\{\rc\ (\a\vs4\al\c1(2x+y+3=0,,x-2=0,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=2,,y=-7,))代入z=x+eq \f(1,3)y,可得z=-eq \f(1,3);
    由eq \b\lc\{\rc\ (\a\vs4\al\c1(x-2y+4=0,,x-2=0,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=2,,y=3,))代入z=x+eq \f(1,3)y,可得z=3.比较可知,z的最大值为3.
    9.已知O是坐标原点,点A(-1,1),若点M(x,y)为平面区域eq \b\lc\{\rc\ (\a\vs4\al\c1(x+y≥2,,x≤1,,y≤2))上的一个动点,则eq \(OA,\s\up6(→))·eq \(OM,\s\up6(→))的取值范围是[0,2].
    解析:由题中的线性约束条件作出可行域,如图.其中C(0,2),B(1,1),D(1,2).
    由z=eq \(OA,\s\up6(→))·eq \(OM,\s\up6(→))=-x+y,得y=x+z.由图可知,当直线y=x+z分别过点C和B时,z分别取得最大值2和最小值0,所以eq \(OA,\s\up6(→))·eq \(OM,\s\up6(→))的取值范围为[0,2].
    10.若实数x,y满足不等式组eq \b\lc\{\rc\ (\a\vs4\al\c1(x-y+2≥0,,x+2y-4≥0,,2x+y-5≤0,))且3(x-a)+2(y+1)的最大值为5,则a=2.
    解析:设z=3(x-a)+2(y+1),作出不等式组表示的平面区域如图中阴影部分所示,
    由z=3(x-a)+2(y+1)得y=-eq \f(3,2)x+eq \f(3a-2+z,2),作出直线y=-eq \f(3,2)x,平移该直线,
    易知当直线过点A(1,3)时,z取得最大值,又目标函数的最大值为5,
    所以3(1-a)+2(3+1)=5,解得a=2.
    11.已知约束条件eq \b\lc\{\rc\ (\a\vs4\al\c1(x-2y+2≥0,,3x-2y-3≤0,,x+y-1≥0))表示的平面区域为D,若存在点P(x,y)∈D,使x2+y2≥m成立,则实数m的最大值为( A )
    A.eq \f(181,16) B.1
    C.eq \f(9,13) D.eq \f(1,2)
    解析:如图,作出可行域D,要存在点P(x,y)∈D,使x2+y2≥m成立,只需m≤(x2+y2)max.而x2+y2表示可行域D中的点与原点间距离的平方,由图可知,点Aeq \b\lc\(\rc\)(\a\vs4\al\c1(\f(5,2),\f(9,4)))与原点间距离的平方最大,所以(x2+y2)max=eq \f(181,16),即m≤eq \f(181,16),所以m的最大值为eq \f(181,16),故选A.
    12.设x,y满足约束条件eq \b\lc\{\rc\ (\a\vs4\al\c1(2x+y-3≤0,,2x-2y-1≤0,,x-a≥0,))其中a>0,若eq \f(x-y,x+y)的最大值为2,则a的值为( C )
    A.eq \f(1,2) B.eq \f(1,4)
    C.eq \f(3,8) D.eq \f(5,9)
    解析:
    设z=eq \f(x-y,x+y),则y=eq \f(1-z,1+z)x,当z=2时,y=-eq \f(1,3)x,作出x,y满足的约束条件eq \b\lc\{\rc\ (\a\vs4\al\c1(2x+y-3≤0,,2x-2y-1≤0,,x-a≥0))表示的平面区域如图中阴影部分所示,作出直线y=-eq \f(1,3)x,易知此直线与区域的边界线2x-2y-1=0的交点为(eq \f(3,8),-eq \f(1,8)),当直线x=a过点(eq \f(3,8),-eq \f(1,8))时a=eq \f(3,8),又此时直线y=eq \f(1-z,1+z)x的斜率eq \f(1-z,1+z)的最小值为-eq \f(1,3),即-1+eq \f(2,z+1)的最小值为-eq \f(1,3),即z的最大值为2,符合题意,所以a的值为eq \f(3,8),故选C.
    13.若不等式组eq \b\lc\{\rc\ (\a\vs4\al\c1(x-y+2≥0,,x-5y+10≤0,,x+y-8≤0))所表示的平面区域内存在点(x0,y0),使x0+ay0+2≤0成立,则实数a的取值范围是(-∞,-1].
    解析:由不等式组所表示的平面区域(图中阴影部分)可得y>0,由题意得a≤eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(x+2,y)))max,eq \f(y,x+2)表示(-2,0)与平面区域内(x,y)两点连线的斜率,可得eq \f(3,7)≤eq \f(y,x+2)≤1,
    所以-eq \f(7,3)≤-eq \f(x+2,y)≤-1,所以a≤-1.
    14.已知实数x,y满足eq \b\lc\{\rc\ (\a\vs4\al\c1(y≥x+2,,x+y≤6,,x≥1,))则z=2|x-2|+|y|的最小值是( C )
    A.6 B.5
    C.4 D.3
    解析:画出不等式组eq \b\lc\{\rc\ (\a\vs4\al\c1(y≥x+2,,x+y≤6,,x≥1))表示的可行域,如图阴影部分,其中A(2,4),B(1,5),C(1,3),∴x∈[1,2],y∈[3,5].∴z=2|x-2|+|y|=-2x+y+4,当直线y=2x-4+z过点A(2,4)时,直线在y轴上的截距最小,此时z有最小值,最小值为4-2×2+4=4,故选C.
    15.已知x,y满足条件eq \b\lc\{\rc\ (\a\vs4\al\c1(x≥0,,y≥x,,3x+4y≤12,))则eq \f(x+2y+3,x+1)的取值范围是[3,9].
    解析:画出不等式组表示的可行域,如图中阴影部分所示,eq \f(x+2y+3,x+1)=1+2×eq \f(y+1,x+1),eq \f(y+1,x+1)表示可行域中的点(x,y)与点P(-1,-1)连线的斜率.由图可知,当x=0,y=3时,eq \f(x+2y+3,x+1)取得最大值,且(eq \f(x+2y+3,x+1))max=9.
    因为点P(-1,-1)在直线y=x上,所以当点(x,y)在线段AO上时,eq \f(x+2y+3,x+1)取得最小值,且(eq \f(x+2y+3,x+1))min=3.所以eq \f(x+2y+3,x+1)的取值范围是[3,9].
    相关试卷

    高考数学(文数)一轮复习创新思维课时练6.2《二元一次不等式(组)与简单的线性规划问题》(教师版): 这是一份高考数学(文数)一轮复习创新思维课时练6.2《二元一次不等式(组)与简单的线性规划问题》(教师版),共9页。

    高考数学(文数)一轮复习课时练习:6.2《二元一次不等式(组)与简单的线性规划问题》(教师版): 这是一份高考数学(文数)一轮复习课时练习:6.2《二元一次不等式(组)与简单的线性规划问题》(教师版),共10页。试卷主要包含了已知变量x,y满足,若实数x,y满足等内容,欢迎下载使用。

    高考数学(理数)一轮复习检测卷:6.2《二元一次不等式(组)与简单的线性规划问题》 (学生版): 这是一份高考数学(理数)一轮复习检测卷:6.2《二元一次不等式(组)与简单的线性规划问题》 (学生版),共3页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map