2022年高考数学(理数)一轮复习课时作业64《离散型随机变量的均值与方差(学生版)
展开课时作业64 离散型随机变量的均值与方差
第一次作业 基础巩固练
一、选择题
1.若随机变量ξ的分布列如表所示,E(ξ)=1.6,则a-b=( )
ξ | 0 | 1 | 2 | 3 |
P | 0.1 | a | b | 0.1 |
A.0.2 B.-0.2
C.0.8 D.-0.8
2.已知袋中有3个白球,2个红球,现从中随机取出3个球,其中每个白球计1分,每个红球计2分,记X为取出3个球的总分值,则E(X)=( )
A. B.
C.4 D.
3.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)等于( )
A. B.
C. D.
4.随机变量X的分布列如下表,且E(X)=2,则D(2X-3)=( )
X | 0 | 2 | a |
P | p |
A.2 B.3
C.4 D.5
5.设袋中有两个红球一个黑球,除颜色不同,其他均相同,每次抽取一个球,记下颜色后放回袋中,连续抽三次,X表示三次中红球被抽中的次数,每个小球被抽中的概率相同,每次抽取相对独立,则方差D(X)=( )
A.2 B.1
C. D.
6.已知0<a<,随机变量ξ的分布列如下:
ξ | -1 | 0 | 1 |
P | a | -a |
当a增大时,( )
A.E(ξ)增大,D(ξ)增大 B.E(ξ)减小,D(ξ)增大
C.E(ξ)增大,D(ξ)减小 D.E(ξ)减小,D(ξ)减小
二、填空题
7.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D(X)= .
8.一个人将编号为1,2,3,4的四个小球随机放入编号为1,2,3,4的四个盒子中,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数为ξ,则ξ的期望值为 .
9.一台仪器每启动一次都随机地出现一个5位的二进制数A=,其中A的各位数字中,a1=1,ak(k=2,3,4,5)出现0的概率为,出现1的概率为.若启动一次出现的数字为A=10101,则称这次试验成功,若成功一次得2分,失败一次得-1分,则100次重复试验的总得分X的方差为 .
10.某种游戏每局的规则是:参与者现在从标有5,6,7,8,9的相同小球中随机摸取一个,将小球上的数字作为其本金(单位:元),随后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其奖金(单位:元).若随机变量ξ和η分别表示参与者在每一局游戏中的本金与奖金,则E(ξ)-E(η)= .
三、解答题
11.某市为了了解人们对这一复兴中国梦的伟大战略举措的认识程度,对不同年龄的人举办了一次“一带一路”知识竞赛,满分100分,现将所有参赛者按分数分成5组(第一组:[75,80),第二组[80,85),第三组:[85,90),第四组:[90,95),第五组[95,100]),得到如图所示的频率分布直方图.
(1)求实数m的值,并求所有参赛者分数的中位数;
(2)若从分数在[90,95),[95,100]的参赛者中按分层抽样选取6人.
①求选取的6人中,分数分别在[90,95),[95,100]上的人数;
②再从选取的6人中随机挑选2人到省里培训,记选中的2人中得分在[95,100]的人数为X,求随机变量X的分布列及数学期望.
12.为了解共享单车在A市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了200人进行分析,得到如下列联表(单位:人).
| 经常使用 | 偶尔使用或不使用 | 合计 |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为A市使用共享单车的情况与年龄有关?
(2)①现从所选取的30岁以上的网友中,采用分层抽样的方法选取10人,再从这10人中随机选出3人赠送优惠券,将频率视为概率,求选出的3人中至少有2人经常使用共享单车的概率;
②将频率视为概率,从A市所有参与调查的网友中随机选取10人赠送礼品,记其中经常使用共享单车的人数为X,求X的数学期望和方差.
参考公式:K2=,其中n=a+b+c+d.
参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
第二次作业 高考·模拟解答题体验
1.某班为了活跃元旦气氛,主持人请12位同学做一个游戏,第一轮游戏中,主持人将标有数字1到12的十二张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取到标有数字7到12的卡片的同学留下,其余的淘汰;第二轮将标有数字1到6的六张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取到标有数字4到6的卡片的同学留下,其余的淘汰;第三轮将标有数字1,2,3的三张相同的卡片放入一个不透明的盒子中,每人依次从中取出一张卡片,取到标有数字2,3的卡片的同学留下,其余的淘汰;第四轮用同样的办法淘汰一位同学,最后留下的这位同学获得一个奖品.已知同学甲参加了该游戏.
(1)求甲获得奖品的概率;
(2)设X为甲参加游戏的轮数,求X的分布列和数学期望.
2.某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.
(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;
(2)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.
3.为了减少雾霾,还城市一片蓝天,某市政府于12月4日到12月31日在主城区实行车辆限号出行政策,鼓励民众不开车低碳出行.市政府为了了解民众低碳出行的情况,统计了该市甲、乙两个单位各200名员工12月5日到12月14日共10天的低碳出行的人数,画出茎叶图如图所示:
(1)若甲单位数据的平均数是122,求x;
(2)现从图中的数据中任取4天的数据(甲、乙两个单位中各取2天),记抽取的4天中甲、乙两个单位员工低碳出行的人数不低于130的天数分别为ξ1,ξ2,令η=ξ1+ξ2,求η的分布列和期望.
高考数学一轮复习课时作业:70 离散型随机变量的均值与方差 Word版含解析: 这是一份高考数学一轮复习课时作业:70 离散型随机变量的均值与方差 Word版含解析,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年高考数学一轮复习课时规范练64离散型随机变量的均值与方差含解析新人教A版理: 这是一份2023年高考数学一轮复习课时规范练64离散型随机变量的均值与方差含解析新人教A版理,共9页。
高考数学(理数)一轮复习:课时达标检测56《离散型随机变量的分布列、均值与方差》(学生版): 这是一份高考数学(理数)一轮复习:课时达标检测56《离散型随机变量的分布列、均值与方差》(学生版)