2022年高考数学(理数)一轮复习课时作业60《古典概型(学生版)
展开课时作业60 古典概型
一、选择题
1.已知袋子中装有大小相同的6个小球,其中有2个红球、4个白球.现从中随机摸出3个小球,则至少有2个白球的概率为( )
A. B. C. D.
2.投掷两颗骰子,其向上的点数分别为m和n,则复数(m+ni)2为纯虚数的概率为( )
A. B.
C. D.
3.从甲、乙、丙、丁四个人中选两名代表,甲被选中的概率是( )
A. B.
C. D.
4.已知集合M={1,2,3,4},N={(a,b)|a∈M,b∈M},A是集合N中任意一点,O为坐标原点,则直线OA与y=x2+1有交点的概率是( )
A. B.
C. D.
5.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于12的概率为( )
A. B.
C. D.
6.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( )
A. B.
C. D.
7.如图,三行三列的方阵中有九个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )
A. B.
C. D.
二、填空题
8.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 .
9.从2,3,4,5,6这5个数字中任取3个,则所取3个数之和为偶数的概率为 .
10.用两种不同的颜色给图中三个矩形随机涂色,每个矩形只涂一种颜色,则相邻两个矩形涂不同颜色的概率是 .
|
|
|
三、解答题
11.在某项大型活动中,甲、乙等五名志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.
(1)求甲、乙两人同时参加A岗位服务的概率;
(2)求甲、乙两人不在同一个岗位服务的概率;
(3)求五名志愿者中仅有一人参加A岗位服务的概率.
12.某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生各随机抽取100人的成绩进行统计分析,分析制成了如图所示的男生和女生数学成绩的频率分布直方图.
(注:分组区间为[60,70),[70,80),[80,90),[90,100])
(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?
(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.
13.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为( )
A. B.
C. D.
14.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .
15.某县自古就以盛产“美瓜”而名扬内外,生产的“瓜州蜜瓜”有4个系列30多个品种,质脆汁多,香甜可口,清爽宜人,含糖量达14%~19%,是消暑止渴的佳品,有诗曰:冰泉浸绿玉,霸刀破黄金;凉冷消晚暑,清甘洗渴心.调查表明,蜜瓜的甜度与海拔、日照时长、温差有极强的相关性,分别用x,y,z表示蜜瓜甜度与海拔、日照时长、温差的相关程度,并对它们进行量化:0表示一般,1表示良,2表示优,再用综合指标ω=x+y+z的值评定蜜瓜的等级,若ω≥4,则为一级;若2≤ω≤3,则为二级;若0≤ω≤1,则为三级.近年来,周边各省也开始发展蜜瓜种植,为了了解目前蜜瓜在周边各省的种植情况,研究人员从不同省份随机抽取了10块蜜瓜种植地,得到如下结果:
种植地编号 | A | B | C | D | E |
(x,y,z) | (1,0,0) | (2,2,1) | (0,1,1) | (2,0,2) | (1,1,1) |
| |||||
种植地编号 | F | G | H | I | J |
(x,y,z) | (1,1,2) | (2,2,2) | (0,0,1) | (2,2,1) | (0,2,1) |
(1)若有蜜瓜种植地110块,试估计等级为一级的蜜瓜种植地的数量;
(2)在所取样本的二级和二级蜜瓜种植地中任取2块,X表示取到三级蜜瓜种植地的数量,求椭机变量X的分布列及数学期望.
高考数学(理数)一轮复习检测卷:10.4《古典概型》 (学生版): 这是一份高考数学(理数)一轮复习检测卷:10.4《古典概型》 (学生版),共3页。
高考数学(文数)一轮复习课时练习:9.2《古典概型》(学生版): 这是一份高考数学(文数)一轮复习课时练习:9.2《古典概型》(学生版)
高考数学(理数)一轮复习:课时达标检测55《古典概型与几何概型》(学生版): 这是一份高考数学(理数)一轮复习:课时达标检测55《古典概型与几何概型》(学生版)