[中考专题]2022年云南省昆明市中考数学真题模拟测评 (A)卷(含答案解析)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )
A.1B.2C.3D.4
2、下列二次根式的运算正确的是( )
A.B.
C.D.
3、0.1234567891011……是一个无理数,其小数部分是由1开始依次写下递增的正整数得到的,则该无理数小数点右边的第2022位数字是( )
A.0B.1C.2D.3
4、定义一种新运算:,,则方程的解是( )
A.,B.,C.,D.,
5、如图,,AC=DF,下列条件中不能判断△ABC≌△DEF的是( )
A.EF=BCB.C.∠B=∠ED.AB=DE
6、下列计算正确的是( )
A.B.
C.D.
7、如果与的差是单项式,那么、的值是( )
A.,B.,C.,D.,
8、用配方法解一元二次方程x2+3=4x,下列配方正确的是( )
A.(x+2)2=2B.(x-2)2=7C.(x+2)2=1D.(x-2)2=1
9、若单项式与是同类项,则的值是( )
A.6B.8C.9D.12
10、《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x元,则可列方程为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、若机器人在数轴上某点第一步从向左跳1个单位到,第二步从向右跳2个单位到,第三步从向左跳3个单位到,第四步从向右跳4个单位到,按以上规律跳2018步,机器人落在数轴上的点,且所表示的数恰好是2019,则机器人的初始位置所表示的数是__________.
2、若使多项式中不含有的项,则__________.
3、如图,已知长方形ABCD纸片,AB=8,BC=4,若将纸片沿AC折叠,点D落在,则重叠部分的图形的周长为___.
4、在圆内接四边形ABCD中,,则的度数为______.
5、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.
三、解答题(5小题,每小题10分,共计50分)
1、李老师参加“新星杯”教学大赛,在课堂教学的练习环节中,设计了一个学生选题活动,即从4道题目中任选两道作答.李老师用课件在同一页面展示了A,B,C,D四张美丽的图片,其中每张图片链接一道练习题目,李老师找甲、乙两名同学随机各选取一张图片,并要求全班同学作答选取图片所链接的题目.
(1)甲同学选取A图片链接题目的概率是 ;
(2)求全班同学作答图片A和B所链接题目的概率.(请用列表法或画树状图法求解)
2、计算:
(1)
(2)
3、已知的立方根是-3,的算术平方根是4,c是的整数部分,求的平方根.
4、平面上有三个点A,B,O.点A在点O的北偏东方向上,,点B在点O的南偏东30°方向上,,连接AB,点C为线段AB的中点,连接OC.
(1)依题意补全图形(借助量角器、刻度尺画图);
(2)写出的依据:
(3)比较线段OC与AC的长短并说明理由:
(4)直接写出∠AOB的度数.
5、某公司销售部门2021年上半年完成的销售额如下表.
(正号表示销售额比上个月上升,负号表示销售额比上个月下降)
(1)上半年哪个月的销售额最高?每个月销售额最低?销售额最高的比销售额最低的高多少?
(2)这家公司2021年6月的销售额与去年年底相比是上升了还是下降了?上升或下降了多少?
-参考答案-
一、单选题
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、A
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
2、B
【分析】
根据二次根式的性质及运算逐项进行判断即可.
【详解】
A、,故运算错误;
B、,故运算正确;
C、,故运算错误;
D、,故运算错误.
故选:B
【点睛】
本题考查了二次根式的性质、二次根式的运算,掌握二次根式的性质及运算法则是关键.
3、A
【分析】
一位数字9个,两位数字90个,三位数字900个,由此算出2022处于三位数字的第几个数字求得答案即可.
【详解】
∵共有9个1位数,90个2位数,900个3位数,
∴2022-9-90×2=1833,
∴1833÷3=611,
∵此611是继99后的第611个数,
∴此数是710,第三位是0,
故从左往右数第2022位上的数字为0,
故选:A.
【点睛】
此题主要考查了规律型:数字的变化类,根据已知得出变化规律是解题关键.
4、A
【分析】
根据新定义列出关于x的方程,解方程即可.
【详解】
解:由题意得,方程,化为,
整理得,,
,
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解得:,,
故选A.
【点睛】
本题考查了公式法解一元二次方程,正确理解新运算、掌握公式法解一元二次方程的一般步骤是解题的关键.
5、A
【分析】
利用先证明结合已有的条件 再对每个选项添加的条件逐一分析,即可得到答案.
【详解】
解:如图,
所以添加EF=BC,不能判定△ABC≌△DEF,故A符合题意;
延长 交于 添加,
△ABC≌△DEF,故B,C不符合题意;
添加AB=DE,能判定△ABC≌△DEF,故D不符合题意;
故选A
【点睛】
本题考查的是添加一个条件判定两个三角形全等,熟练的掌握“利用判定三角形全等”是解本题的关键.
6、D
【分析】
利用完全平方公式计算即可.
【详解】
解:A、原式=a2+2ab+b2,本选项错误;
B、原式==-a2+2ab-b2,本选项错误;
C、原式=a2−2ab+b2,本选项错误;
D、原式=a2+2ab+b2,本选项正确,
故选:D.
【点睛】
此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
7、C
【分析】
根据与的差是单项式,判定它们是同类项,根据同类项的定义计算即可.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵与的差是单项式,
∴与是同类项,
∴n+2=3,2m-1=3,
∴m=2, n=1,
故选C.
【点睛】
本题考查了同类项即含有的字母相同,且相同字母的指数也相同,准确判断同类项是解题的关键.
8、D
【分析】
根据题意将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案.
【详解】
,
整理得:,
配方得:,即.
故选:D.
【点睛】
本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键.
9、C
【分析】
根据同类项的定义可得,代入即可求出mn的值.
【详解】
解:∵与是同类项,
∴,
解得:m=3,
∴.
故选:C.
【点睛】
此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项.
10、D
【分析】
设这个物品的价格是x元,根据人数不变列方程即可.
【详解】
解:设这个物品的价格是x元,由题意得
,
故选D.
【点睛】
本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.
二、填空题
1、1010
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由题意知每跳两次完毕向右进1个单位,按此规律跳了2018步后距出发地的距离是1009个单位,且在的右侧,根据所表示的数恰是2019,即可求得初始位置点所表示的数.
【详解】
解:设机器人在数轴上表示a的点开始运动,A0表示a,A1表示a-1,第二步从向右跳2个单位到,A2表示a-1+2= a+1,第三步从向左跳3个单位到,A3表示a+1-3,第四步从向右跳4个单位到,A4表示a+1-3+4= a+2,由题意知每跳两次完毕向右进1个单位,而,
所以电子跳蚤跳2018步后A2018表示的数为a+1009,
又因为表示2019,
∴a+1009=2019,
∴a=1010,
所以表示1010.
故答案为:1010.
【点睛】
本题考查了数轴、列代数式,简单一元一次方程,图形的变化规律,得到每跳动2次相对于原数+1的规律是解题的关键.
2、
【分析】
由于多项式含有项的有,若不含项,则它们的系数为0,由此即可求出m值.
【详解】
解:∵多项式中不含项,
∴的系数为0,
即=0,
.
故答案为.
【点睛】
本题难度较低,主要考查学生对合并同类项的掌握,先将原多项式合并同类项,再令项的系数为0,然后解关于m的方程即可求解.
3、##
【分析】
先说明△AFD′≌△CFB可得BF=D′F,设D′F=x,在Rt△AFD′中根据勾股定理求得x,再根据AF=AB−BF求得AF,勾股定理求得,最后根据周长公式求解即可.
【详解】
解:由于折叠可得:AD′=BC,∠D′=∠B,
又∵∠AFD′=∠CFB,
∴△AFD′≌△CFB(AAS),
∴D′F=BF,
设D′F=x,则AF=8−x,
在Rt△AFD′中,(8−x)2=x2+42,解得:x=3,
∴AF=AB−FB=8−3=5,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
在中,
∴重叠部分的图形的周长为
故答案为:
【点睛】
本题考查了勾股定理的正确运用,在直角三角形AFD′中运用勾股定理求出BF的长是解答本题的关键.
4、110°
【分析】
根据圆内接四边形对角互补,得∠D+∠B=180°,结合已知求解即可.
【详解】
∵圆内接四边形对角互补,
∴∠D+∠B=180°,
∵
∴∠D=110°,
故答案为:110°.
【点睛】
本题考查了圆内接四边形互补的性质,熟练掌握并运用性质是解题的关键.
5、4
【分析】
先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.
【详解】
解:∵△ADE沿直线DE翻折后与△FDE重合,
∴DA=DF,∠ADE=∠FDE,
∵DE∥BC,
∴∠ADE=∠B,∠FDE=∠BMD,
∴∠B=∠BMD,
∴DB=DM,
∵= ,
∴=2,
∴=2,
∴FM=DM,
∵MN∥DE,
∴△FMN∽△FDE,
∴== ,
∴MN=DE=×8=4.
故答案为:4
【点睛】
本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.
三、解答题
1、
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
(2)图表见解析,
【分析】
(1)根据题意可得一共有4种等可能结果,甲同学选取A图片链接题目有1种结果,再根据概率公式,即可求解;
(2)根据题意,列出表格,可得到共有12种结果,每种结果出现的可能性相同,其中甲、乙同学选取图片A和B图片链接的题目有2种,再根据概率公式,即可求解.
(1)
解:根据题意得:甲同学选取A图片链接题目的概率是;
(2)
解:根据题意,列表如下:
共有12种结果,每种结果出现的可能性相同,其中甲、乙同学选取图片A和B图片链接的题目有2种:(A,B),(B,A),
∴P(全班同学作答图片A和B所链接的题目).
【点睛】
本题主要考查了用列表法或画树状图法求概率,根据题意,画出表格是解题的关键.
2、
(1)4
(2)-16
【分析】
(1)直接利用有理数的加减法计算即可;
(2)利用求一个数的立方根、算术平方根、有理数的乘方按顺序进行计算即可.
(1)
解:原式=,
=4;
(2)
解:原式,
.
【点睛】
本题考查了有理数的加减、算术平方根、立方根,有理数的乘方,解题的关键是掌握相应的运算法则.
3、±4
【分析】
根据的立方根是-3,可求得a的值;根据的算术平方根是4及已经求得的a的值,可· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
求得b的值;再由c是的整数部分可求得c的值,则可求得的值,从而求得结果.
【详解】
∵的立方根是-3
∴
∴
∵的算术平方根是4
∴
即
∴
∵c是的整数部分,且
∴
∴
∵
∴的平方根为±4
【点睛】
本题考查了平方根、算术平方根、立方根等概念,熟练掌握这些定义是关键.
4、(1)见解析;(2)三角形的两边之和大于第三边;(3) ,理由见解析;(4)70°
【分析】
(1)根据题意画出图形,即可求解;
(2)根据三角形的两边之和大于第三边,即可求解;
(3)利用刻度尺测量得: ,即可求解;
(4)用180°减去80°,再减去30°,即可求解.
【详解】
解:(1)根据题意画出图形,如图所示:
(2)在△AOB中,因为三角形的两边之和大于第三边,
所以;
(3) ,理由如下:利用刻度尺测量得: ,
AC=2cm,
∴;
(4)根据题意得: .
【点睛】
本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.
5、
(1)六月份销售额最高,二月份销售额最低,销售额最高的月份比最低的月份多4.7万元
(2)这家公司2021年6月的销售额与2020年12月相比是上升了,上升了0.6万元.
【分析】
(1)由2021年上半年的销售额,利用表格即可确定出1月-6月的销售额,可确定出最高与最低销· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
售额;求出销售额最高与最低之差即可;
(2)求出2021年6月的销售额与2020年12月的销售额之差即可做出判断.
(1)
解:设2020年12月完成销售额为a万元.
根据题意得:2021年上半年的销售额分别为:
a-1.6;a-1.6-2.5=a-4.1;a-4.1+2.4=a-1.7;a-1.7+1.2=a-0.5;a-0.5-0.7=a-1.2;a-1.2+1.8=a+0.6,
a+0.6-( a-4.1)=4.7(万元);
则六月份销售额最高,二月份销售额最低,销售额最高的月份比最低的月份多4.7万元;
(2)
解:由(1)2020年12月完成销售额为a万元,2021年6月的销售额为a+0.6万元,
a+0.6-a=0.6>0,
所以这家公司2021年6月的销售额与2020年12月相比是上升了,上升了0.6万元.
【点睛】
本题考查了列代数式,整式的加减,以及正数与负数,弄清题意是解本题的关键.
月份
一月份
二月份
三月份
四月份
五月份
六月份
销售额(万元)
-1.6
-2.5
+2.4
+1.2
-0.7
+1.8
A
B
C
D
A
(A,B)
(A,C)
(A,D)
B
(B,A)
(B,C)
(B,D)
C
(C,A)
(C,B)
(C,D)
D
(D,A)
(D,B)
(D,C)
【真题汇编】中考数学真题模拟测评 (A)卷(含答案解析): 这是一份【真题汇编】中考数学真题模拟测评 (A)卷(含答案解析),共24页。试卷主要包含了下列各数中,是不等式的解的是,若单项式与是同类项,则的值是等内容,欢迎下载使用。
【真题汇编】2022年云南省昆明市中考数学备考模拟练习 (B)卷(含答案解析): 这是一份【真题汇编】2022年云南省昆明市中考数学备考模拟练习 (B)卷(含答案解析),共29页。试卷主要包含了下列命题错误的是,下列说法中错误的是等内容,欢迎下载使用。
[中考专题]最新中考数学真题模拟测评 (A)卷(含答案详解): 这是一份[中考专题]最新中考数学真题模拟测评 (A)卷(含答案详解),共23页。试卷主要包含了如图,OM平分,,,则.,下列计算错误的是,下列命题中,真命题是,下列式中,与是同类二次根式的是,下列命题中,是真命题的是等内容,欢迎下载使用。