【高频真题解析】2022年最新中考数学模拟真题 (B)卷(含答案及详解)
展开
这是一份【高频真题解析】2022年最新中考数学模拟真题 (B)卷(含答案及详解),共22页。试卷主要包含了下列利用等式的性质,错误的是,下列计算错误的是,如图所示,由A到B有①等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列方程中,属于二元一次方程的是( )
A.xy﹣3=1B.4x﹣2y=3C.x+=4D.x2﹣4y=1
2、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )
A.1个B.2个C.3个D.4个
3、要使式子有意义,则( )
A.B.C.D.
4、在实数范围内分解因式2x2﹣8x+5正确的是( )
A.(x﹣)(x﹣)B.2(x﹣)(x﹣)
C.(2x﹣)(2x﹣)D.(2x﹣4﹣)(2x﹣4+)
5、下列关于x的方程中,一定是一元二次方程的是( )
A.ax2﹣bx+c=0B.2ax(x﹣1)=2ax2+x﹣5
C.(a2+1)x2﹣x+6=0D.(a+1)x2﹣x+a=0
6、下列利用等式的性质,错误的是( )
A.由,得到B.由,得到
C.由,得到D.由,得到
7、下列计算错误的是( )
A.B.C.D.
8、文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.
小张:该工艺品的进价是每个22元;
小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.
经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?
设这种工艺品的销售价每个应降低x元,由题意可列方程为( )
A.(38﹣x)(160+×120)=3640
B.(38﹣x﹣22)(160+120x)=3640
C.(38﹣x﹣22)(160+3x×120)=3640
D.(38﹣x﹣22)(160+×120)=3640
9、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.两点确定一条直线B.经过一点有无数条直线
C.两点之间,线段最短D.一条线段等于已知线段
10、 “科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如下表:
则视力的众数是( )
A.4.5B.4.6C.4.7D.4.8
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.
2、近几年,就业形式严峻,考研人数持续增加,官方统计显示2022年考研报名人数为4570000人,创下了历史新高,将数据“4570000”用科学记数法表示为______.
3、如图,已知△ABC与△ADE均是等腰直角三角形,∠BAC=∠ADE=90°,AB=AC=1,AD=DE=,点D在直线BC上,EA的延长线交直线BC于点F,则FB的长是 _____.
4、某食品店推出两款袋装营养早餐配料,甲种每袋装有10克花生,10克芝麻,10克核桃;乙种每袋装有20克花生,5克芝麻,5克核桃.甲、乙两款袋装营养早餐配料每袋成本价分别为袋中花生、芝麻、核桃的成本价之和.已知花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%,乙款营养早餐配料每袋利润率为20%.若这两款袋装营养早餐配料的销售利润率达到24%,则该公司销售甲、乙两款袋装营养早餐配料的数量之比是______.
5、如图,在半径为5的⊙O中,弦AB=6,OC⊥AB于点D,交⊙O于点C,则CD=_____.
三、解答题(5小题,每小题10分,共计50分)
1、为了解班级学生参加课后服务的学习效果,何老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)此次调查的总人数为________;
(2)扇形统计图中“不达标”对应的圆心角度数是________°;
(3)请将条形统计图补充完整;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(4)为了共同进步,何老师准备从被调查的A类和D类学生中各随机抽取一位同学进行“一帮一”互助学习.请用画树状图或列表的方法求出所选两位同学恰好是相同性别的概率.
2、若关于x的一元二次方程有两个相等的实数根.
(1)用含m的代数式表示n;
(2)求的最小值.
3、某市为了解七年级数学教育教学情况,对全市七年级学生进行数学综合素质测评,我校也随机抽取了部分学生的测试成绩作为样本进行分析,请根据图中所给出的信息,解答下列问题:
(1)在这次调查中被抽取学生的总人数为 人;将表示成绩类别为“中”的条形统计图补充完整.
(2)成绩类别为“优”的圆心角的度数为 .
(3)某校七年级共有750人参加了这次数学考试,估计本校七年级共有多少名学生的数学成绩可达到良或良以上等级?
4、先化简,再求值:,其中.
5、某药店在防治新型冠状病毒期间,购进甲、乙两种医疗防护口罩,已知每件甲种口罩的价格比每件乙种口罩的价格贵8元,用1200元购买甲种口罩的件数恰好与用1000元购买乙种口罩的件数相同.
(1)求甲、乙两种口罩每件的价格各是多少元?
(2)计划购买这两种口罩共80件,且投入的经费不超过3600元,那么,最多可购买多少件甲种口罩?
-参考答案-
一、单选题
1、B
【分析】
二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.
【详解】
解:A、xy-3=1,是二元二次方程,故本选项不合题意;
B、4x-2y=3,属于二元一次方程,故本选项符合题意;
C、x+=4,是分式方程,故本选项不合题意;
D、x2-4y=1,是二元二次方程,故本选项不合题意;
故选:B.
【点睛】
此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
2、C
【分析】
解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:解不等式组得:,
∵不等式组有且仅有3个整数解,
∴,
解得:,
解方程得:,
∵方程的解为负整数,
∴,
∴,
∴a的值为:-13、-11、-9、-7、-5、-3,…,
∴符合条件的整数a为:-13,-11,-9,共3个,
故选C.
【点睛】
本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.
3、B
【分析】
根据分式有意义的条件,分母不为0,即可求得答案.
【详解】
解:要使式子有意义,
则
故选B
【点睛】
本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键.
4、B
【分析】
解出方程2x2-8x+5=0的根,从而可以得到答案.
【详解】
解:∵方程2x2-8x+5=0中,a=2,b=-8,c=5,
∴Δ=(-8)2-4×2×5=64-40=24>0,
∴x=,
∴2x2-8x+5=2(x﹣)(x﹣),
故选:B.
【点睛】
本题考查了解一元二次方程,实数范围内分解因式,求出一元二次方程的根是解题的关键.
5、C
【分析】
根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可.
【详解】
解:A.当a=0时,ax2+bx+c=0不是一元二次方程,故此选项不符合题意;
B.2ax(x-1)=2ax2+x-5整理后化为:-2ax-x+5=0,不是一元二次方程,故此选项不符合题意;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C.(a2+1)x2-x+6=0,是关于x的一元二次方程,故此选项符合题意;
D.当a=-1时,(a+1)x2-x+a=0不是一元二次方程,故此选项不符合题意.
故选:C.
【点睛】
本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).
6、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
7、A
【分析】
直接利用二次根式的性质以及二次根式的乘法运算法则化简,进而判断即可.
【详解】
解:A.,故此选项计算错误,符合题意;
B.,故此选项计算正确,不合题意;
C.,故此选项计算正确,不合题意;
D.,故此选项计算正确,不合题意;
故选:A.
【点睛】
此题考查了二次根式的性质及二次根式的乘法运算法则,熟记乘法法则是解题的关键.
8、D
【分析】
由这种工艺品的销售价每个降低x元,可得出每个工艺品的销售利润为(38-x-22)元,销售量为(160+×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x的一元二次方程,此题得解.
【详解】
解:∵这种工艺品的销售价每个降低x元,
∴每个工艺品的销售利润为(38-x-22)元,销售量为(160+×120)个.
依题意得:(38-x-22)(160+×120)=3640.
故选:D.
【点睛】
本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
9、C
【分析】
根据线段的性质进行解答即可.
【详解】
解:最短的路线选①的理由是两点之间,线段最短,
故选:C.
【点睛】
本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.
10、C
【分析】
出现次数最多的数据是样本的众数,根据定义解答.
【详解】
解:∵4.7出现的次数最多,∴视力的众数是4.7,
故选:C.
【点睛】
此题考查了众数的定义,熟记定义是解题的关键.
二、填空题
1、4
【分析】
先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.
【详解】
解:∵△ADE沿直线DE翻折后与△FDE重合,
∴DA=DF,∠ADE=∠FDE,
∵DE∥BC,
∴∠ADE=∠B,∠FDE=∠BMD,
∴∠B=∠BMD,
∴DB=DM,
∵= ,
∴=2,
∴=2,
∴FM=DM,
∵MN∥DE,
∴△FMN∽△FDE,
∴== ,
∴MN=DE=×8=4.
故答案为:4
【点睛】
本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.
2、4.57×106
【分析】
将一个数表示成a×10n,1≤a<10,n是正整数的形式,叫做科学记数法,根据此定义即可得出答· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
案.
【详解】
解:根据科学记数法的定义,4570000=4.57×106,
故答案为:4.57×106.
【点睛】
本题主要考查科学记数法的概念,关键是要牢记科学记数法的形式.
3、
【分析】
过点A作AH⊥BC于点H,根据等腰直角三角形的性质可得DH=,CD=,再证明△ABF∽△DCA,进而对应边成比例即可求出FB的长.
【详解】
解:如图,过点A作AH⊥BC于点H,
∵∠BAC=90°,AB=AC=1,
∴BC=,
∵AH⊥BC,
∴BH=CH=,
∴AH=,
∵AD=DE=,
∴DH=,
∴CD=DH-CH=,
∵∠ABC=∠ACB=45°,
∴∠ABF=∠ACD=135°,
∵∠DAE=45°,
∴∠DAF=135°,
∵∠BAC=90°,
∴∠BAF+∠DAC=45°,
∵∠BAF+∠F=45°,
∴∠F=∠DAC,
∴△ABF∽△DCA,
∴,
∴,
∴BF=,
故答案为:.
【点睛】
本题考查了相似三角形的判定与性质,等腰直角三角形,解决本题的关键是得到△ABF∽△DAC.
4、13:30
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
设1克芝麻成本价m元,1克核桃成本价n元,根据“花生每克成本价0.02元,甲款营养早餐配料的售价为2.6元,利润率为30%”列出方程得到m+n=0.18,进而算出甲乙两款袋装营养早餐的成本价,再根据“甲每袋袋装营养早餐的售价为2.6元,利润率为30%,乙种袋装营养早餐每袋利润率为20%.若公司销售这种混合装的袋装营养早餐总利润率为24%”列出方程即可得到甲、乙两种袋装营养早餐的数量之比.
【详解】
解:设1克芝麻成本价m元,1克核桃成本价n元,根据题意得:
(10×0.02+10m+10n)×(1+30%)=2.6,
解得m+n=0.18,
则甲种干果的成本价为10×0.02+10m+10n=2(元),
乙种干果的成本价为20×0.02+5m+5n=0.4+5×0.18=1.3(元),
设甲种干果x袋,乙种干果y袋,根据题意得:
2x×30%+1.3y×20%=(2x+1.3y)×24%,
解得,,即甲、乙两种袋装袋装营养早餐的数量之比是13:30.
故答案为:13:30.
【点睛】
本题考查二元一次方程的应用,解题的关键是找出等量关系列出方程.
5、
【分析】
连接OA,先利用垂径定理得出AD的长,再由勾股定理得出OD的长即可解答.
【详解】
解:连接OA,
∵AB=6,OC⊥AB于点D,
∴AD=AB=×6=3,
∵⊙O的半径为5,
∴,
∴CD=OC-OD=5-4=1.
故答案为:1.
【点睛】
本题考查的是垂径定理及勾股定理,解答此题的关键是作出辅助线构造出直角三角形,再利用勾股定理求解.
三、解答题
1、
(1)20人
(2)36
(3)见解析
(4)
【分析】
(1)由条形统计图中B类学生数及扇形统计图中B类学生的百分比即可求得参与调查的总人数;
(2)由扇形统计图可求得不达标的学生所占的百分比,它与360°的积即为所求的结果;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(3)现两种统计图及(1)中所求得的总人数,可分别求得C类、D类学生的人数,从而可求得这两类中未知的学生数,从而可补充完整条形统计图;
(4)记A类学生中的男生为“男1”,两个女生分别记为“女1”、“女2”,记D类学生的一男一女分别为“男”、“女”,列表即可求得所有可能的结果数及所选两位同学恰好是相同性别的结果数,从而可求得概率.
(1)
由条形统计图知,B类学生共有6+4=10(人),由扇形统计图知,B类学生所占的百分比为50%,则参与调查的总人数为:(人)
故答案为:20人
(2)
由扇形统计图知,D类学生所占的百分比为:,则扇形统计图中“不达标”对应的圆心角度数是:360°×10%=36°
故答案为:36
(3)
C类学生总人数为:20×25%=5(人),则C类学生中女生人数为:(人)
D类学生总人数为:20×10%=2(人),则C类学生中男生人数为:(人)
补充完整的条形统计图如下:
(4)
记A类学生中的男生为“男1”,两个女生分别记为“女1”、“女2”,记D类学生的一男一女分别为“男”、“女”,列表如下:
则选取两位同学的所有可能结果数为6种,所选两位同学恰好是相同性别的结果数有3种,所以所选两位同学恰好是相同性别的概率为:
【点睛】
本题是统计图的综合,考查了条形统计图与扇形统计图,简单事件的概率,关键是读懂两个统计图并能从图中获取信息.
2、
(1)
(2)
【分析】
(1)由两个相等的实数根知,整理得n的含m的代数式.
(2)对进行配方,然后求最值即可.
(1)
解:由题意知
∴
(2)
解:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵
∴当时,的值最小,为
∴的最小值为.
【点睛】
本题考查了一元二次方程的根,一元二次代数式的最值.解题的关键在于配完全平方.
3、
(1),见解析;
(2);
(3)
【分析】
(1)根据成绩类别为“良”的人数除以其所占的百分数求解抽取学生总人数,再由总人数乘以成绩类别为“中”所占的比例求解成绩类别为“中”的人数,即可补全条形统计图;
(2)求出成绩类别为“优”所占的百分数即可求得其所对应的圆心角;
(3)根据家长总人数乘以良或良以上等级所占的百分数即可求解.
(1)
解:22÷44%=50(人),50×20%=10(人),
答:这次调查中被抽取学生的总人数为50人,补全条形统计图如图所示:
故答案为:50;
(2)
解:360°×=72°,
答:成绩类别为“优”的圆心角的度数为72°,
故答案为:72°;
(3)
解:750×=480(名),
答:估计本校七年级共有480名学生的数学成绩可达到良或良以上等级
【点睛】
本题考查条形统计图和扇形统计图的信息关联、用样本估计总体、能从条形统计图和扇形统计图中获取有效信息是解答的关键.
4、,-1.
【分析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算即可.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:原式=,
当时,原式=.
【点睛】
本题考查了分式的化简与求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.
5、
(1)每件乙种商品的价格为40元,每件甲种商品的价格为48元.
(2)最多可购买50件甲种商品.
【分析】
(1)设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+8)元,根据数量=总价÷单价结合用1200元购买甲种口罩的件数恰好与用1000元购买乙种口罩的件数相同,即可得出关于x的分式方程,解之并检验后即可得出结论;
(2)设购买y件甲种商品,则购买(80-y)件乙种商品,根据总价=单价×购买数量结合投入的经费不超过3600元,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其内的最大正整数即可.
(1)
解:设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+8)元,
根据题意得:,
解得:x=40,
经检验,x=40原方程的解,
∴x+8=48.
答:每件乙种商品的价格为40元,每件甲种商品的价格为48元.
(2)
解:设购买y件甲种商品,则购买(80-y)件乙种商品,
根据题意得:48y+40(80-y)≤3600,
解得:y≤50.
答:最多可购买50件甲种商品.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价,列出关于x的分式方程;(2)根据总价=单价×购买数量,列出关于y的一元一次不等式.
视力
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.0
人数
2
3
6
9
12
10
5
3
男1
女1
女2
男
男男1
男女1
男女2
女
女男1
女女1
女女2
相关试卷
这是一份【历年真题】最新中考数学模拟专项测试 B卷(含答案详解),共19页。试卷主要包含了在中,,,那么的值等于,下列说法中正确的个数是等内容,欢迎下载使用。
这是一份【高频真题解析】2022年最新中考数学模拟真题练习 卷(Ⅱ)(含答案及解析),共19页。试卷主要包含了如果,那么的取值范围是,下列说法中正确的个数是,如图,在数轴上有三个点A等内容,欢迎下载使用。
这是一份【真题汇编】最新中考数学模拟真题练习 卷(Ⅱ)(含答案及详解),共20页。试卷主要包含了在平面直角坐标系xOy中,点A,下列四个实数中,无理数是,下列式中,与是同类二次根式的是等内容,欢迎下载使用。