![模拟真题:中考数学第三次模拟试题(含答案解析)第1页](http://www.enxinlong.com/img-preview/2/3/12673544/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![模拟真题:中考数学第三次模拟试题(含答案解析)第2页](http://www.enxinlong.com/img-preview/2/3/12673544/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![模拟真题:中考数学第三次模拟试题(含答案解析)第3页](http://www.enxinlong.com/img-preview/2/3/12673544/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
模拟真题:中考数学第三次模拟试题(含答案解析)
展开
这是一份模拟真题:中考数学第三次模拟试题(含答案解析),共24页。试卷主要包含了已知4个数,下列命题中,是真命题的是等内容,欢迎下载使用。
中考数学第三次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知关于x,y的方程组和的解相同,则的值为( )A.1 B.﹣1 C.0 D.20212、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )m.A. B. C. D.2003、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )A.1 B.2 C.3 D.44、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是( )A.63° B.58° C.54° D.56°5、如图,已知双曲线 经过矩形 边 的中点 且交 于 ,四边形 的面积为 2,则A.1 B.2 C.4 D.86、如图,已知△A′B′C′与△ABC是位似图形,点O是位似中心,若A′是OA的中点,则△A′B'C′与△ABC的面积比是( )A.1:4 B.1:2 C.2:1 D.4:17、已知4个数:,,,,其中正数的个数有( )A.1 B. C.3 D.48、下列命题中,是真命题的是( )A.一条线段上只有一个黄金分割点B.各角分别相等,各边成比例的两个多边形相似C.两条直线被一组平行线所截,所得的线段成比例D.若2x=3y,则9、若x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则4b﹣2a的值为( )A.﹣2 B.﹣1 C.1 D.210、已知点A(m,2)与点B(1,n)关于y轴对称,那么m+n的值等于( )A.﹣1 B.1 C.﹣2 D.2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.2、一次函数y=﹣x+1的图象与反比例函数y=的图象交点的纵坐标为2,当﹣3<x<﹣1时,反比例函数y=中y的取值范围是 _____.3、如果将方程变形为用含的式子表示,那么_______.4、桌子上放有6枚正面朝上的硬币,每次翻转其中的4枚,至少翻转_________次能使所有硬币都反面朝上.5、观察下列图形排列规律(其中△是三角形,□是正方形,〇是圆),□〇△□□〇△□〇△□□〇△□……,若第一个图形是正方形,则第2022个图形是________(填图形名称).三、解答题(5小题,每小题10分,共计50分)1、为了解班级学生参加课后服务的学习效果,何老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)此次调查的总人数为________;(2)扇形统计图中“不达标”对应的圆心角度数是________°;(3)请将条形统计图补充完整;(4)为了共同进步,何老师准备从被调查的A类和D类学生中各随机抽取一位同学进行“一帮一”互助学习.请用画树状图或列表的方法求出所选两位同学恰好是相同性别的概率.2、先化简,再求值:,其中.3、计算:(1)-14-[4-(-3)2] (2)(- +)×(-24)4、如图,一次函数与反比例函数(k≠0)交于点A、B两点,且点A的坐标为(1,3),一次函数与轴交于点C,连接OA、OB.(1)求一次函数和反比例函数的表达式;(2)求点B的坐标及的面积;(3)过点A作轴的垂线,垂足为点D.点M是反比例函数第一象限内图像上的一个动点,过点M作轴的垂线交轴于点N,连接CM.当与Rt△CNM相似时求M点的坐标.5、如图,点E是矩形ABCD的边BA延长线上一点,连接ED,EC,EC交AD于点G,作CF∥ED交AB于点F,DC=DE.(1)求证:四边形CDEF是菱形;(2)若BC=3,CD=5,求AG的长. -参考答案-一、单选题1、B【分析】联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,进而求出a与b的值,即可求出所求.【详解】解:联立得:,解得:,则有,解得:,∴,故选:B.【点睛】此题考查了二元一次方程组的解,以及解二元一次方程组,方程组的解即为能使方程组中两方程都成立的未知数的值.2、B【分析】连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可.【详解】解:连接BD,如下图所示:与所对的弧都是.. 所对的弦为直径AD,. 又,为等腰直角三角形,在中,,由勾股定理可得:. 故选:B.【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.3、A【分析】根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.【详解】同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;故选:A【点睛】本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.4、C【分析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【详解】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°-∠ACD-∠BCE=180°-63°-63°=54°.故选:C.【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.5、B【分析】利用反比例函数图象上点的坐标,设,则根据F点为AB的中点得到.然后根据反比例函数系数k的几何意义,结合,即可列出,解出k即可.【详解】解:设,∵点F为AB的中点,∴.∵,∴,即,解得:.故选B.【点睛】本题考查反比例函数的k的几何意义以及反比例函数上的点的坐标特点、矩形的性质,掌握比例系数k的几何意义是在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答本题的关键.6、A【分析】根据位似图形的概念得到△A′B′C′∽△ABC,A′B′∥AB,根据△OA′B′∽△OAB,求出,根据相似三角形的性质计算,得到答案.【详解】解:∵△A′B′C′与△ABC是位似图形,∴△A′B′C′∽△ABC,A′B′∥AB,∴△OA′B′∽△OAB,∴,∴△A′B'C′与△ABC的面积比为1:4,故选:A.【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.7、C【分析】化简后根据正数的定义判断即可.【详解】解:=1是正数,=2是正数,=1.5是正数,=-9是负数,故选C.【点睛】本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.8、B【分析】根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判断;根据比例的性质对D选项进行判断.【详解】解:A.一条线段上有两个黄金分割点,所以A选项不符合题意;B.各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;C.两条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;D.若2x=3y,则,所以D选项不符合题意.故选:B.【点睛】本题考查了命题:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9、D【分析】将x=1代入原方程即可求出答案.【详解】解:将x=1代入原方程可得:1+a-2b=0,∴a-2b=-1,∴原式=-2(a-2b)=2,故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程的解的概念,本题属于基础题型.10、B【分析】关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m,n的值,然后代入代数式求解即可得.【详解】解:∵与点关于y轴对称,∴,,∴,故选:B.【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键.二、填空题1、##【分析】设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.【详解】解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,设去年甲、乙、丙三种水果的种植面积分别为: 去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,设去年甲、乙、丙三种水果的平均亩产量分别为: 则今年甲品种水果的平均亩产量为: 乙品种水果的平均亩产量为: 丙品种的平均亩产量为 设今年的种植面积分别为: 甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,①,②,解得: 又丙品种水果增加的产量占今年水果总产量的, 解得: 所以三种水果去年的种植总面积与今年的种植总面积之比为: 故答案为:【点睛】本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.2、<y<2【分析】把一个交点的纵坐标是2代入y=-x+1求出横坐标为-1,把(-1,2)代入y=求出k,令-3<x<-1,求出y=的取值范围,即可求出y的取值范围.【详解】解:令y=2,则2=-x+1,∴x=-1,把(-1,2)代入y=,解得:k=-2,∴反比例函数为y=,当x=-3时,代入y=得y=,∴x=-3时反比例函数的值为:,当x=-1时,代入y=得y=2,又知反比例函数y=在-3<x<-1时,y随x的增大而增大,即当-3<x<-1时反比例函数y的取值范围为:<y<2.【点睛】本题考查了反比例函数与一次函数的交点及正比例函数与反比例函数的性质,难度不大,关键是掌握用待定系数法求解函数的解析式.3、【分析】先移项,再系数化为1即可.【详解】解:移项,得:,方程两边同时除以,得:,故答案为:.【点睛】本题考查了解二元一次方程,将x看作常数,把y看做未知数,灵活应用等式的性质求解是关键.4、3【分析】用“”表示正面朝上,用“”表示正面朝下,找出最少翻转次数能使杯口全部朝下的情况即可得答案【详解】用“”表示正面朝上,用“”表示正面朝下,开始时第一次第二次第三次至少翻转3次能使所有硬币都反面朝上.故答案为:3【点睛】本题考查了正负数的应用,根据朝上和朝下的两种状态对应正负号,尝试最少的次数满足题意是解题的关键.5、圆【分析】三角形、正方形、圆的排列规律是七个为一循环.用2022除以7,商为组数,如果不能整除,再根据余数即可判定第2022个图形是什么图形.【详解】解:2022÷7=288(组)……6(个)第2022个图形是第289组的第6个图形,是圆.故答案为:圆.【点睛】解答此题的关键是找出这些图形的排列规律,几个图形为一循环(组).三、解答题1、(1)20人(2)36(3)见解析(4)【分析】(1)由条形统计图中B类学生数及扇形统计图中B类学生的百分比即可求得参与调查的总人数;(2)由扇形统计图可求得不达标的学生所占的百分比,它与360°的积即为所求的结果;(3)现两种统计图及(1)中所求得的总人数,可分别求得C类、D类学生的人数,从而可求得这两类中未知的学生数,从而可补充完整条形统计图;(4)记A类学生中的男生为“男1”,两个女生分别记为“女1”、“女2”,记D类学生的一男一女分别为“男”、“女”,列表即可求得所有可能的结果数及所选两位同学恰好是相同性别的结果数,从而可求得概率.(1)由条形统计图知,B类学生共有6+4=10(人),由扇形统计图知,B类学生所占的百分比为50%,则参与调查的总人数为:(人)故答案为:20人(2)由扇形统计图知,D类学生所占的百分比为:,则扇形统计图中“不达标”对应的圆心角度数是:360°×10%=36°故答案为:36(3)C类学生总人数为:20×25%=5(人),则C类学生中女生人数为:(人) D类学生总人数为:20×10%=2(人),则C类学生中男生人数为:(人)补充完整的条形统计图如下:(4)记A类学生中的男生为“男1”,两个女生分别记为“女1”、“女2”,记D类学生的一男一女分别为“男”、“女”,列表如下: 男1女1女2男 男男1男女1男女2女女男1女女1女女2则选取两位同学的所有可能结果数为6种,所选两位同学恰好是相同性别的结果数有3种,所以所选两位同学恰好是相同性别的概率为:【点睛】本题是统计图的综合,考查了条形统计图与扇形统计图,简单事件的概率,关键是读懂两个统计图并能从图中获取信息.2、,-1.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算即可.【详解】解:原式=,当时,原式=.【点睛】本题考查了分式的化简与求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.3、(1)4;(2)-22【分析】(1)先计算乘方,再计算加减法;(2)根据乘法分配律计算.【详解】解:(1)-14-[4-(-3)2] =-1-(-5)=4; (2)(- +)×(-24)=×(-24)-×(-24)+×(-24)=-6+20-36=-22.【点睛】此题考查了有理数的计算,正确掌握含乘方的有理数的混合运算法则、乘法分配律法则是解题的关键.4、(1)一次函数表达式为,反比例函数表达式为;(2),;(3)或【分析】(1)把分别代入一次函数与反比例函数,解出,即可得出答案;(2)把一次函数和反比例函数联立求解即可求出点B坐标,令代入一次函数解出点C坐标,由即可;(3)根据相似三角形的判定:两边成比例且夹角相等的两个三角形相似,找出对应边成比例求解即可.【详解】(1)把代入一次函数得:,解得:,∴一次函数表达式为,把代入反比例函数得:,即,∴反比例函数表达式为;(2),解得:或,∴,令代入得:,∴,∴;(3)①当时,,,,,,∴,即,解得:,,∵M在第一象限,∴,,∴,②当时,,∴,即,解得:,,∵M在第一象限,∴,,∴,综上,当与相似时,M点的坐标为或.【点睛】本题考查反比例函数综合以及相似三角形的判定与性质,掌握相关知识点的应用是解题的关键.5、(1)见解析(2)【分析】(1)根据矩形性质先证明四边形CDEF是平行四边形,再根据有一组邻边相等的平行四边形是菱形即可解决问题;(2)连接GF,根据菱形的性质证明△CDG≌△CFG,然后根据勾股定理即可解决问题.【小题1】解:证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∵CF∥ED,∴四边形CDEF是平行四边形,∵DC=DE.∴四边形CDEF是菱形;【小题2】如图,连接GF,∵四边形CDEF是菱形,∴CF=CD=5,∵BC=3,∴BF=,∴AF=AB-BF=5-4=1,在△CDG和△CFG中,,∴△CDG≌△CFG(SAS),∴FG=GD,∴FG=GD=AD-AG=3-AG,在Rt△FGA中,根据勾股定理,得FG2=AF2+AG2,∴(3-AG)2=12+AG2,解得AG=.【点睛】本题考查了矩形的性质,菱形的判定与性质,全等三角形的判定与性质,勾股定理,解决本题的关键是掌握菱形的判定与性质.
相关试卷
这是一份【真题汇总卷】2022年北京市通州区中考数学第三次模拟试题(含答案及解析),共23页。试卷主要包含了如图所示,由A到B有①,的相反数是,观察下列图形等内容,欢迎下载使用。
这是一份【真题汇编】中考数学真题模拟测评 (A)卷(含答案解析),共24页。试卷主要包含了下列各数中,是不等式的解的是,若单项式与是同类项,则的值是等内容,欢迎下载使用。
这是一份【真题汇编】2022年北京市平谷区中考数学第三次模拟试题(含答案及解析),共24页。试卷主要包含了已知圆O的半径为3,AB,下列说法中,不正确的是,下列计算正确的是等内容,欢迎下载使用。