模拟真题:2022年北京市丰台区中考数学模拟测评 卷(Ⅰ)(含答案解析)
展开这是一份模拟真题:2022年北京市丰台区中考数学模拟测评 卷(Ⅰ)(含答案解析),共22页。试卷主要包含了下列命题中,是真命题的是,下列运动中,属于旋转运动的是,如图,OM平分,,,则.等内容,欢迎下载使用。
2022年北京市丰台区中考数学模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、今年,网络购物已经成为人们生活中越来越常用的购物方式.元旦期间,某快递分派站有包裹若干件需快递员派送,若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x名快递,则可列方程为( )
A. B. C. D.
2、下列方程中,属于二元一次方程的是( )
A.xy﹣3=1 B.4x﹣2y=3 C.x+=4 D.x2﹣4y=1
3、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第1次操作;做第2次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续操作下去,从数串2,9,7开始操作第2022以后所产生的那个新数串的所有数之和是( )
A.20228 B.10128 C.5018 D.2509
4、若数a使关于x的方程=的解为非负数,使关于y的不等式组无解,则所有满足条件的整数a的值之和为( )
A.7 B.12 C.14 D.18
5、下列命题中,是真命题的是( )
A.一条线段上只有一个黄金分割点
B.各角分别相等,各边成比例的两个多边形相似
C.两条直线被一组平行线所截,所得的线段成比例
D.若2x=3y,则
6、下列运动中,属于旋转运动的是( )
A.小明向北走了 4 米 B.一物体从高空坠下
C.电梯从 1 楼到 12 楼 D.小明在荡秋千
7、如图,OM平分,,,则( ).
A.96° B.108° C.120° D.144°
8、某三棱柱的三种视图如图所示,已知俯视图中,,下列结论中:①主视图中;②左视图矩形的面积为;③俯视图的正切值为.其中正确的个数为( )
A.个 B.个 C.个 D.个
9、在实数范围内分解因式2x2﹣8x+5正确的是( )
A.(x﹣)(x﹣) B.2(x﹣)(x﹣)
C.(2x﹣)(2x﹣) D.(2x﹣4﹣)(2x﹣4+)
10、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )m.
A. B. C. D.200
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知是二元一次方程的一个解,那么_______.
2、如图,点、点是线段上的两个点,且,如果AB=5cm,CD=1cm,那么的长等于_______cm.
3、多项式x3-4x2y3+26的次数是_______.
4、小华为学校“赓续百年初心,庆祝建党百年”活动布置会场,在—个不透明的口袋里有4根除颜色以外完全相同的缎带,其中2根为红色,2根为黄色,从口袋中随机摸出根缎带,则恰好摸出1根红色缎带1根黄色缎带的概率是______.
5、己知等腰三角形两条边长分别是4和10,,则此三角形的周长是___________________
三、解答题(5小题,每小题10分,共计50分)
1、解方程组: .
2、规定:A,B,C是数轴上的三个点,当CA=3CB时我们称C为[A,B]的“三倍距点”,当CB=3CA时,我们称C为[B,A]的“三倍距点”.点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b−5|=0.
(1) a=__________,b=__________;
(2)若点C在线段AB上,且为[A,B]的“三倍距点”,则点C所表示的数为______;
(3)点M从点A出发,同时点N从点B出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为t秒.当点B为M,N两点的“三倍距点”时,求t的值.
3、分解因式:
(1);
(2).
4、解方程:(x+2)(x﹣3)=4x+8;
5、在平面直角坐标系xOy中,抛物线上有两点和点.
(1)用等式表示a与b之间的数量关系,并求抛物线的对称轴;
(2)当时,结合函数图象,求a的取值范围.
-参考答案-
一、单选题
1、B
【分析】
设该分派站有x个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x的一元一次方程,求出答案.
【详解】
解:设该分派站有x名快递员,则可列方程为:
7x+6=8x-1.
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键.
2、B
【分析】
二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.
【详解】
解:A、xy-3=1,是二元二次方程,故本选项不合题意;
B、4x-2y=3,属于二元一次方程,故本选项符合题意;
C、x+=4,是分式方程,故本选项不合题意;
D、x2-4y=1,是二元二次方程,故本选项不合题意;
故选:B.
【点睛】
此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:①首先是整式方程.②方程中共含有两个未知数.③所有未知项的次数都是一次.不符合上述任何一个条件的都不叫二元一次方程.
3、B
【分析】
根据题意分别求得第一次操作,第二次操作所增加的数,可发现是定值5,从而求得第101次操作后所有数之和为2+7+9+2022×5=10128.
【详解】
解:∵第一次操作增加数字:-2,7,
第二次操作增加数字:5,2,-11,9,
∴第一次操作增加7-2=5,
第二次操作增加5+2-11+9=5,
即,每次操作加5,第2022次操作后所有数之和为2+7+9+2022×5=10128.
故选:B.
【点睛】
此题主要考查了数字变化类,关键是找出规律,要求要有一定的解题技巧,解题的关键是能找到所增加的数是定值5.
4、C
【分析】
第一步:先用a的代数式表示分式方程的解.再根据方程的解为非负数,x-3≠0,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m的取值范围进行综合考虑确定最后m的取值范围,最后根据a为整数确定最后结果.
【详解】
解:,
2a-8=x-3,
x=2a-5,
∵方程的解为非负数,x-3≠0,
∴,
解得a≥且a≠4,
,
解不等式组得:,
∵不等式组无解,
∴5-2a≥-7,
解得a≤6,
∴a的取值范围:≤a≤6且a≠4,
∴满足条件的整数a的值为3、5、6,
∴3+5+6=14,
故选:C.
【点睛】
本题考查分式方程的解、解一元一次不等式组、解一元一次不等式,掌握用含a的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m的取值范围是解题关键.
5、B
【分析】
根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判断;根据比例的性质对D选项进行判断.
【详解】
解:A.一条线段上有两个黄金分割点,所以A选项不符合题意;
B.各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;
C.两条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;
D.若2x=3y,则,所以D选项不符合题意.
故选:B.
【点睛】
本题考查了命题:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
6、D
【分析】
旋转定义:物体围绕一个点或一个轴作圆周运动,根据旋转定义对各选项进行一一分析即可.
【详解】
解:A. 小明向北走了 4 米,是平移,不属于旋转运动,故选项A不合题意;
B. 一物体从高空坠下,是平移,不属于旋转运动,故选项B不合题意;
C. 电梯从 1 楼到 12 楼,是平移,不属于旋转运动,故选项C不合题意;
D. 小明在荡秋千,是旋转运动,故选项D符合题意.
故选D.
【点睛】
本题考查图形旋转运动,掌握旋转定义与特征,旋转中心,旋转方向,旋转角度是解题关键.
7、B
【分析】
设,利用关系式,,以及图中角的和差关系,得到、,再利用OM平分,列方程得到,即可求出的值.
【详解】
解:设,
∵,
∴,
∴.
∵,
∴,
∴.
∵OM平分,
∴,
∴,解得.
.
故选:B.
【点睛】
本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.
8、A
【分析】
过点A作AD⊥BC与D,根据BD=4,,可求AD=BD,根据,得出BC=7,可得DC=BC-BD=7-4=3可判断①;根据左视图矩形的面积为3×6=可判断②;根据tanC可判断③.
【详解】
解:过点A作AD⊥BC与D,
∵BD=4,,
∴AD=BD,
∵,
∴,
∴BC=7,
∴DC=BC-BD=7-4=3,
∴①主视图中正确;
∴左视图矩形的面积为3×6=,
∴②正确;
∴tanC,
∴③正确;
其中正确的个数为为3个.
故选择A.
【点睛】
本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型.
9、B
【分析】
解出方程2x2-8x+5=0的根,从而可以得到答案.
【详解】
解:∵方程2x2-8x+5=0中,a=2,b=-8,c=5,
∴Δ=(-8)2-4×2×5=64-40=24>0,
∴x=,
∴2x2-8x+5=2(x﹣)(x﹣),
故选:B.
【点睛】
本题考查了解一元二次方程,实数范围内分解因式,求出一元二次方程的根是解题的关键.
10、B
【分析】
连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可.
【详解】
解:连接BD,如下图所示:
与所对的弧都是.
.
所对的弦为直径AD,
.
又,
为等腰直角三角形,
在中,,
由勾股定理可得:.
故选:B.
【点睛】
本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.
二、填空题
1、##
【分析】
把代入,即可求出a的值.
【详解】
解:由题意可得:,
,
解得:,
故答案为:.
【点睛】
本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
2、2
【分析】
,可知,代值求解即可.
【详解】
解:
,
故答案为:2.
【点睛】
本题考查了线段的和与差.解题的关键在于正确的表示各线段之间的数量关系.
3、5
【分析】
根据多项式次数的定义解答.
【详解】
解:多项式各项的次数分别为:3、5、0,
故答案为:5.
【点睛】
此题考查了多项式次数的定义:多项式中次数最高项的次数是多项式的次数,熟记定义是解题的关键.
4、
【分析】
画树状图共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,再由概率公式即可求解
【详解】
解:根据题意画出树状图,得:
共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,
所以摸出1根红色缎带1根黄色缎带的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率是解题的关键.
5、24
【分析】
分两种情考虑:腰长为4,底边为10;腰长为10,底边为4.根据这两种情况即可求得三角形的周长.
【详解】
当腰长为4,底边为10时,因4+4<10,则不符合构成三角形的条件,此种情况不存在;
当腰长为10,底边为4时,则三角形的周长为:10+10+4=24.
故答案为:24
【点睛】
本题考查了等腰三角形的性质及周长,要注意分类讨论.
三、解答题
1、
【分析】
由②①,得:④,由③②,得:⑤,再由由⑤④,得:,再将代入④,可得,然后将,代入①,可得,即可求解.
【详解】
解: ,
由②①,得:④,
由③②,得:⑤,
由⑤④,得:,
解得:,
将代入④,得:,
解得:,
将,代入①,得: ,
解得:
方程组的解为:.
【点睛】
本题主要考查了解三元一次方程组,熟练掌握三元一次方程组的解法是解题的关键.
2、
(1)-3,5
(2)3
(3)当t为或t=3或秒时,点B为M,N两点的“三倍距点”.
【分析】
(1)根据非负数的性质,即可求得a,b的值;
(2)根据“三倍距点”的定义即可求解;
(3)分点B为[M,N]的“三倍距点”和点B为[N,M]的“三倍距点”两种情况讨论即可求解.
(1)
解:∵(a+3)2+|b−5|=0,
∴a+3=0,b−5=0,
∴a=-3,b=5,
故答案为:-3,5;
(2)
解:∵点A所表示的数为-3,点B所表示的数为5,
∴AB=5-(-3)=8,
∵点C为[A,B]的“三倍距点”,点C在线段AB上,
∴CA=3CB,且CA+CB=AB=8,
∴CB=2,
∴点C所表示的数为5-2=3,
故答案为:3;
(3)
解:根据题意知:点M所表示的数为3t-3,点N所表示的数为t+5,
∴BM=,BN=,(t>0),
当点B为[M,N]的“三倍距点”时,即BM=3BN,
∴,
∴或,
解得:,
而方程,无解;
当点B为[N,M]的“三倍距点” 时,即3BM=BN,
∴,
∴或,
解得:或t=3;
综上,当t为或t=3或秒时,点B为M,N两点的“三倍距点”.
【点睛】
本题考查了非负数的性质,一元一次方程的应用、数轴以及绝对值,熟练掌握“三倍距点”的定义是解题的关键.
3、
(1)
(2)
【分析】
(1)提取公因式,然后用完全平方公式进行化简即可.
(2)提取公因式,然后用平方差公式进行化简即可.
(1)
解:原式;
(2)
解:原式
.
【点睛】
本题考查了乘法公式进行因式分解.解题的关键在于熟练掌握乘法公式.
4、x1=7,x2=-2
【分析】
方程整理为一般形式,利用公式法求出解即可.
【详解】
解:方程整理得:x2-5x-14=0,
则a=1,b=-5,c=-14,
∵b2-4ac=25+56=81>0,
∴x=,
解得:x1=7,x2=-2.
【点睛】
此题考查了解一元二次方程-公式法,熟练掌握求根公式是解本题的关键.
5、
(1)b=4a,-2
(2)或.
【分析】
(1)将(-1,0)代入函数解析式可得,则抛物线对称轴为直线.
(2)由点B坐标可得AB所在直线为,过点B作轴交x轴于点C,可得AB为等腰直角三角形的斜边,从而可得点B当时和时点B的坐标为(2,3)或(4,3)或(-4,-3)或(-6,-5),再分类讨论抛物线开口向上或向下求解.
(1)
将(-1,0)代入得,
∴,
∴抛物线对称轴为直线.
(2)
∵点B坐标为,
∴点B所在直线为,
∴点A在直线上,
过点B作轴交x轴于点C,
则,,
∴AB为等腰直角三角形的斜边,
∴当时,,当时,,
∴或,
∴点B坐标为(2,3)或(4,3)或或,
当时,抛物线开口向上,
∵抛物线经过点(-1,0),对称轴为直线,
∴抛物线经过点(-3,0),
∴抛物线开口向上时,抛物线不经过,,
将(2,3)代入得,
解得,
将(4,5)代入得,
解得,
∴.
时,抛物线开口向下,抛物线不经过,,
将代入得,
解得,
将代入得,
解得,
∴,
综上所述,或.
【点睛】
本题考查了抛物线与系数的关系,对称轴,抛物线的解析式,一次函数与二次函数的交点,熟练掌握抛物线的性质,灵活运用分类思想,待定系数法是解题的关键.
相关试卷
这是一份【真题汇总卷】2022年北京市丰台区中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析),共20页。试卷主要包含了有依次排列的3个数等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年北京市丰台区中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共26页。试卷主要包含了下列方程是一元二次方程的是等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年北京市朝阳区中考数学模拟真题测评 A卷(含答案解析),共27页。试卷主要包含了二次函数y=,观察下列图形等内容,欢迎下载使用。