模拟测评:2022年北京市海淀区中考数学模拟真题 (B)卷(含详解)
展开2022年北京市海淀区中考数学模拟真题 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若,,且a,b同号,则的值为( )
A.4 B.-4 C.2或-2 D.4或-4
2、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )
A.cm B.2cm C.1cm D.2cm
3、如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第个图案中有2023个白色纸片,则的值为( )
A.672 B.673 C.674 D.675
4、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )
A. B. C. D.
5、在2,1,0,-1这四个数中,比0小的数是( )
A.2 B.0 C.1 D.-1
6、下列利用等式的性质,错误的是( )
A.由,得到 B.由,得到
C.由,得到 D.由,得到
7、已知关于的分式方程无解,则的值为( )
A.0 B.0或-8 C.-8 D.0或-8或-4
8、下列说法正确的是( )
A.的系数是 B.的次数是5次
C.的常数项为4 D.是三次三项式
9、下列说法正确的是( )
A.掷一枚质地均匀的骰子,掷得的点数为3的概率是.
B.若AC、BD为菱形ABCD的对角线,则的概率为1.
C.概率很小的事件不可能发生.
D.通过少量重复试验,可以用频率估计概率.
10、若,则下列分式化简正确的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,将△ADE沿直线DE翻折后与△FDE重合,DF、EF分别与边BC交于点M、N,如果DE=8,,那么MN的长是_____.
2、已知是方程的解,则a的值是______.
3、在圆内接四边形ABCD中,,则的度数为______.
4、若,,则________.
5、近几年,就业形式严峻,考研人数持续增加,官方统计显示2022年考研报名人数为4570000人,创下了历史新高,将数据“4570000”用科学记数法表示为______.
三、解答题(5小题,每小题10分,共计50分)
1、(1)解方程:x²-2x-8=0;
(2)计算:5sin60°-cos245°.
2、先化简,再求值
,其中,,.
3、先化简,再求值:,其中.
4、已知抛物线y=x2+bx+c与y轴交于点C(0,2),它的顶点为M,对称轴是直线x=﹣1.
(1)求此抛物线的表达式及点M的坐标;
(2)将上述抛物线向下平移m(m>0)个单位,所得新抛物线经过原点O,设新抛物线的顶点为N,请判断△MON的形状,并说明理由.
5、计算:.
-参考答案-
一、单选题
1、D
【分析】
根据绝对值的定义求出a,b的值,根据a,b同号,分两种情况分别计算即可.
【详解】
解:∵|a|=3,|b|=1,
∴a=±3,b=±1,
∵a,b同号,
∴当a=3,b=1时,a+b=4;
当a=-3,b=-1时,a+b=-4;
故选:D.
【点睛】
本题考查了绝对值,有理数的加法,考查分类讨论的数学思想,知道a,b同号分两种:a,b都是正数或都是负数是解题的关键.
2、B
【分析】
由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.
【详解】
解:∵菱形ABCD的周长为8cm,
∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AC=AB=2cm,
∴OA=1(cm),
在Rt△AOB中,由勾股定理得:OB===(cm),
∴BD=2OB=2(cm),
故选:B.
【点睛】
此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.
3、C
【分析】
根据题目中的图形,可以发现白色纸片的变化规律,然后根据第n个图案中白色纸片2023个,即可解题.
【详解】
解:由图可知,
第1个图案中白色纸片的个数为:1+1×3=4,
第2个图案中白色纸片的个数为:1+2×3=7,
第3个图案中白色纸片的个数为:1+3×3=10,
…
第n个图案中白色纸片的个数为:1+3n,
由题意得,1+3n =2023
解得n=674
故选:C.
【点睛】
本题考查图形的变化,发现题目中白色纸片的变化规律、利用数形结合思想解题是关键.
4、B
【分析】
直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.
【详解】
解:点P(2,1)关于x轴对称的点的坐标是(2,-1).
故选:B.
【点睛】
本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.
5、D
【分析】
根据正数大于零,零大于负数,即可求解.
【详解】
解:在2,1,0,-1这四个数中,比0小的数是-1
故选:D
【点睛】
本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.
6、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
7、D
【分析】
把分式方程转化为整式方程,分分母为零无解,分母为零时,对应的字母值求解.
【详解】
∵
∴,
∴,
∴,
∴当m+4=0时,方程无解,
故m= -4;
∴当m+4≠0,x=2时,方程无解,
∴
故m=0;
∴当m+4≠0,x= -2时,方程无解,
∴
故m=-8;
∴m的值为0或-8或-4,
故选D.
【点睛】
本题考查了分式方程的无解,正确理解无解的条件和意义是解题的关键.
8、A
【分析】
根据单项式的系数、次数的定义以及多项式次数、项数、常数项的定义可解决此题.
【详解】
解:A、的系数是,故选项正确;
B、的次数是3次,故选项错误;
C、的常数项为-4,故选项错误;
D、是二次三项式,故选项错误;
故选A.
【点睛】
本题主要考查单项式的系数、次数的定义以及多项式次数、项数、常数项的定义,熟练掌握单项式的系数、次数的定义以及多项式次数、项数、常数项的定义是解决本题的关键.
9、B
【分析】
概率是指事情发生的可能性,等可能发生的事件的概率相同,小概率事件是指发生的概率比较小,不代表不会发生,通过大量重复试验才能用频率估计概率,利用这些对四个选项一次判断即可.
【详解】
A项:掷一枚质地均匀的骰子,每个面朝上的概率都是一样的都是,故A错误,不符合题意;
B项:若AC、BD为菱形ABCD的对角线,由菱形的性质:对角线相互垂直平分得知两条线段一定垂直,则 AC⊥BD 的概率为1是正确的,故B正确,符合题意;
C项:概率很小的事件只是发生的概率很小,不代表不会发生,故C错误,不符合题意;
D项:通过大量重复试验才能用频率估计概率,故D错误,不符合题意.
故选B
【点睛】
本题考查概率的命题真假,准确理解事务发生的概率是本题关键.
10、C
【分析】
由,令,再逐一通过计算判断各选项,从而可得答案.
【详解】
解:当,时,
,,故A不符合题意;
,故B不符合题意;
而 故C符合题意;
.故D不符合题意
故选:C.
【点睛】
本题考查的是利用特值法判断分式的变形,同时考查分式的基本性质,掌握“利用特值法解决选择题或填空题”是解本题的关键.
二、填空题
1、4
【分析】
先根据折叠的性质得DA=DF,∠ADE=∠FDE,再根据平行线的性质和等量代换得到∠B=∠BMD,则DB=DM,接着利用比例的性质得到FM=DM,然后证明△FMN∽△FDE,从而利用相似比可计算出MN的长.
【详解】
解:∵△ADE沿直线DE翻折后与△FDE重合,
∴DA=DF,∠ADE=∠FDE,
∵DE∥BC,
∴∠ADE=∠B,∠FDE=∠BMD,
∴∠B=∠BMD,
∴DB=DM,
∵= ,
∴=2,
∴=2,
∴FM=DM,
∵MN∥DE,
∴△FMN∽△FDE,
∴== ,
∴MN=DE=×8=4.
故答案为:4
【点睛】
本题主要考查了相似三角形的判定和性质,平行线分线段成比例,图形的折叠,熟练掌握相似三角形的判定和性质,平行线分线段成比例,图形的折叠性质是解题的关键.
2、4
【分析】
把代入方程得到关于的一元一次方程,依次去括号,移项,合并同类项,系数化为1,即可得到答案.
【详解】
解:把代入方程得:
,
去括号得:,
系数化为1得:,
故答案为:4.
【点睛】
本题考查了一元一次方程的解,解题的关键是正确掌握解一元一次方程的方法.
3、110°
【分析】
根据圆内接四边形对角互补,得∠D+∠B=180°,结合已知求解即可.
【详解】
∵圆内接四边形对角互补,
∴∠D+∠B=180°,
∵
∴∠D=110°,
故答案为:110°.
【点睛】
本题考查了圆内接四边形互补的性质,熟练掌握并运用性质是解题的关键.
4、12
【分析】
由变形为,再把和代入求值即可.
【详解】
解:,,
.
故答案为:12.
【点睛】
本题主要考查幂的乘方与积的乘方,解题的关键是将变形为.
5、4.57×106
【分析】
将一个数表示成a×10n,1≤a<10,n是正整数的形式,叫做科学记数法,根据此定义即可得出答案.
【详解】
解:根据科学记数法的定义,4570000=4.57×106,
故答案为:4.57×106.
【点睛】
本题主要考查科学记数法的概念,关键是要牢记科学记数法的形式.
三、解答题
1、(1);(2)
【分析】
(1)利用因式分解法求解;
(2)代入特殊角的三角函数值计算即可.
【详解】
解:(1)x²-2x-8=0
∴;
(2)原式=
=.
【点睛】
此题考查了计算能力,正确掌握解一元二次方程的方法及熟记特殊角的三角函数值是解题的关键.
2、abc+4a2c,22.
【分析】
原式去括号合并得到最简结果,将a、b、c的值代入计算即可求出值.
【详解】
解:3a2b−[2a2b−(2abc−a2b)−4a2c]−abc
=3a2b−(2a2b−2abc+a2b−4a2c)−abc
=3a2b−2a2b+2abc-a2b+4a2c −abc
=abc+4a2c,
当a=−2,b=−3,c=1时,
原式=(-2)×(-3)×1+4×(-2)2×1=6+16=22.
【点睛】
本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.
3、,
【分析】
先对括号里进行通分、合并同类项,然后进行乘除运算化为最简,最后代值求解即可.
【详解】
解:原式
当时,
原式.
【点睛】
本题考查了分式的混合运算以及二次根式的混合运算.解题的关键在于熟练掌握混合运算的运算法则.
4、
(1)y=x2+2x+2,顶点M(﹣1,1)
(2)等腰直角三角形;理由见解析
【分析】
(1)根据待定系数法即可求得抛物线的解析式,然后化成顶点式求得顶点M的坐标;
(2)设新抛物线的解析式为y=(x+1)2+1-m,把(0,0)代入求得m的值,即可根据平移的原则得到顶点N的坐标,根据勾股定理求得OM2=ON2=2,MN2=4,即可得到结论.
(1)
解:∵抛物线y=x2+bx+c与y轴交于点C(0,2),对称轴是直线x=﹣1.
∴,解得,
∴抛物线的表达式为y=x2+2x+2,
∵y=x2+2x+2=(x+1)2+1,
∴顶点M(﹣1,1);
(2)
解:∵抛物线向下平移m(m>0)个单位,所得新抛物线经过原点O,
∴设新抛物线的解析式为y=(x+1)2+1-m,
把(0,0)代入得,0=1+1-m,
∴m=2,
∴顶点N为(-1,-1),
∵M(-1,1),
∴OM2=(-1)2+12=2,ON2=(-1)2+(-1)2=2,MN2=22=4,
∴OM=ON,OM2+ON2=MN2,
∴△MON是等腰直角三角形.
【点睛】
本题考查了待定系数法求二次函数的解析式,二次函数的图象与几何变换,二次函数图象上点的坐标特征,求得顶点M、和顶点N的坐标是解题的关键.
5、x-2y
【分析】
根据完全平方公式、平方差公式及整式的各运算法则进行计算即可.
【详解】
解:原式
.
【点睛】
本题考查了整式的混合运算,熟练掌握各运算法则及公式是解题的关键.
【真题汇编】中考数学模拟真题 (B)卷(含详解): 这是一份【真题汇编】中考数学模拟真题 (B)卷(含详解),共19页。试卷主要包含了正八边形每个内角度数为,在数2,-2,,中,最小的数为,如果与的差是单项式,那么,如图所示,该几何体的俯视图是等内容,欢迎下载使用。
【真题汇总卷】2022年北京市海淀区中考数学模拟测评 卷(Ⅰ)(精选): 这是一份【真题汇总卷】2022年北京市海淀区中考数学模拟测评 卷(Ⅰ)(精选),共24页。试卷主要包含了下列计算中正确的是,下列说法正确的是,已知,,且,则的值为等内容,欢迎下载使用。
【真题汇总卷】2022年北京市海淀区中考数学真题模拟测评 (A)卷(含答案及详解): 这是一份【真题汇总卷】2022年北京市海淀区中考数学真题模拟测评 (A)卷(含答案及详解),共24页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。