[中考专题]2022年河南省周口市中考数学模拟专项测试 B卷(含答案解析)
展开2022年河南省周口市中考数学模拟专项测试 B卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、某物体的三视图如图所示,那么该物体形状可能是( )
A.圆柱 B.球 C.正方体 D.长方体
2、下列式子运算结果为2a的是( ).
A. B. C. D.
3、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )
A. B. C. D.
4、若关于的方程有两个实数根,则的取值范围是( )
A. B. C. D.
5、如图,表中给出的是某月的月历,任意选取“U”型框中的7个数(如阴影部分所示),请你运用所学的数学知识来研究,发现这7个数的和不可能的是( )
A.78 B.70 C.84 D.105
6、下列说法中,正确的是( )
A.东边日出西边雨是不可能事件.
B.抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7.
C.投掷一枚质地均匀的硬币10000次,正面朝上的次数一定为5000次.
D.小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.
7、下列格点三角形中,与右侧已知格点相似的是( )
A. B.
C. D.
8、如图,点是线段的中点,点是的中点,若,,则线段的长度是( )
A.3cm B.4cm C.5cm D.6cm
9、如图,中,,,AD平分交BC于点D,点E为AC的中点,连接DE,则的面积是( )
A.20 B.16 C.12 D.10
10、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是( )
A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形
B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形
C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形
D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知n<5,且关于x的方程x2﹣2x﹣2n=0两根都是整数,则n=___.
2、一杯饮料,第一次倒去全部的,第二次倒去剩下的 ……如此下去,第八次后杯中剩下的饮料是原来的________.
3、某商品进价为26元,当每件售价为50元时,每天能售出40件,经市场调查发现每件售价每降低1元,则每天可多售出2件,当店里每天的利润要达到最大时,店主应把该商品每件售价降低______元.
4、将如图所示的平面展开图折叠成正方体后,相对面上两个数的和都相等,则____.
5、如图,P是反比例函数图象上第二象限内的一点,且矩形PEOF的面积为4,则反比例函数的解析式是______.
三、解答题(5小题,每小题10分,共计50分)
1、已知平行四边形的顶点、分别在其的边、上,顶点、在其的对角线上.
图1 图2
(1)如图1,求证:;
(2)如图2,若,,求的值;
(3)如图1,当,,求时,求的值.
2、如图所示的平面图形分别是由哪种几何体展开形成的?
3、解方程(2x+1)2=x(2x+1).
4、如图,点,,,在同一直线上.已知,,,请说明.
5、已知点,则点到轴的距离为______,到轴的距离为______.
-参考答案-
一、单选题
1、A
【分析】
根据主视图和左视图都是矩形,俯视图是圆,可以想象出只有圆柱符合这样的条件,因此物体的形状是圆柱.
【详解】
解:根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,
则该几何体是圆柱.
故选:A.
【点睛】
本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.熟悉简单的立体图形的三视图是解本题的关键.
2、C
【分析】
由同底数幂的乘法可判断A,由合并同类项可判断B,C,由同底数幂的除法可判断D,从而可得答案.
【详解】
解:故A不符合题意;
不能合并,故B不符合题意;
故C符合题意;
故D不符合题意;
故选C
【点睛】
本题考查的是同底数幂的乘法,合并同类项,同底数幂的除法,掌握“幂的运算与合并同类项”是解本题的关键.
3、C
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:48500000科学记数法表示为:48500000=.
故答案为:.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4、B
【分析】
令该一元二次方程的判根公式,计算求解不等式即可.
【详解】
解:∵
∴
∴
解得
故选B.
【点睛】
本题考查了一元二次方程的根与解一元一次不等式.解题的关键在于灵活运用判根公式.
5、A
【分析】
设“U”型框中的最下排正中间的数为x,则其它6个数分别为x-15,x-8,x-1,x+1,x-6,x-13,表示出这7个数之和,然后分别列出方程解答即可.
【详解】
解:设“U”型框中的最下排正中间的数为x,则其他6个数分别为x-15,x-8,x-1,x+1,x-6,x-13,
这7个数之和为:x-15+x-8+x-1+x+1+x-6+x-13=7x-42.
由题意得:
A、7x-42=78,解得x=,不能求出这7个数,符合题意;
B、7x-42=70,解得x=16,能求出这7个数,不符合题意;
C、7x-42=84,解得x=18,能求出这7个数,不符合题意;
D、7x-42=105,解得x=21,能求出这7个数,不符合题意.
故选:A.
【点睛】
本题考查一元一次方程的实际运用,掌握“U”型框中的7个数的数字的排列规律是解决问题的关键.
6、D
【分析】
根据概率的意义进行判断即可得出答案.
【详解】
解:A、东边日出西边雨是随机事件,故此选项错误;.
B、抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7,错误;有7次正面朝上,不能说明正面朝上的概率是0.7,随着实验次数的增多越来越接近于理论数值0.5,故C选项错误;
C、投掷一枚质地均匀的硬币10000次,正面朝上的次数可能为5000次,故此选项错误;
D、小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618,此选项正确.
故选:D
【点睛】
此题主要考查了概率的意义,正确理解概率的意义是解题关键.
7、A
【分析】
根据题中利用方格点求出的三边长,可确定为直角三角形,排除B,C选项,再由相似三角形的对应边成比例判断A、D选项即可得.
【详解】
解:的三边长分别为:,
,,
∵,
∴为直角三角形,B,C选项不符合题意,排除;
A选项中三边长度分别为:2,4,,
∴,
A选项符合题意,
D选项中三边长度分别为:,,,
∴,
故选:A.
【点睛】
题目主要考查相似三角形的性质及勾股定理的逆定理,理解题意,熟练掌握运用相似三角形的性质是解题关键.
8、B
【分析】
根据中点的定义求出AE和AD,相减即可得到DE.
【详解】
解:∵D是线段AB的中点,AB=6cm,
∴AD=BD=3cm,
∵E是线段AC的中点,AC=14cm,
∴AE=CE=7cm,
∴DE=AE-AD=7-3=4cm,
故选B.
【点睛】
本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.
9、D
【分析】
根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据勾股定理得出AD的长,从而求出三角形ABD的面积,再根据三角形的中线性质即可得出答案;
【详解】
解:∵AB=AC,AD平分∠BAC,BC=8,
∴AD⊥BC,,
∴,
∴,
∵点E为AC的中点,
∴,
故选:D
【点睛】
本题考查了勾股定理,三角形的面积公式,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.
10、D
【分析】
当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.
【详解】
解:如图,连接当为各边中点时,可知分别为的中位线
∴
∴四边形是平行四边形
A中AC=BD,则,平行四边形为菱形;正确,不符合题意;
B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;
C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;
D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;
故选D.
【点睛】
本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.
二、填空题
1、或或或
【分析】
先利用方程有两根求解结合已知条件可得再求解方程两根为结合两根为整数,可得为完全平方数,从而可得答案.
【详解】
解:关于x的方程x2﹣2x﹣2n=0有两根,
x2﹣2x﹣2n=0,
而两个根为整数,则为完全平方数,
或或或
解得:或或或
故答案为:或或或
【点睛】
本题考查的是一元二次方程根的判别式,利用公式法解一元二次方程,熟练的解一元二次方程是解本题的关键.
2、
【分析】
采用枚举法,计算几个结果,从结果中寻找变化的规律.
【详解】
设整杯饮料看成1,列表如下:
次数 | 倒出量 | 剩余量 |
第1次 | ||
第2次 | ||
第3次 | ||
第4次 |
故第8次剩下的饮料是原来的.
故答案为:.
【点睛】
本题考查了有理数幂的运算,正确寻找变化的规律是解题的关键.
3、2
【分析】
设每件商品售价降低元,则每天的利润为:,然后求解计算最大值即可.
【详解】
解:设每件商品售价降低元
则每天的利润为:,
∵
∴当时,最大为968元
故答案为2.
【点睛】
本题考查了一元二次函数的应用.解题的关键在于确定函数解析式.
4、
【分析】
利用正方体及其表面展开图的特点,结合相对面上两个数之和相等,列方程即可得到结论.
【详解】
解:由正方体的展开图的特点可得:
相对,相对,相对,
相对面上两个数的和都相等,
解得:
故答案为:
【点睛】
本题考查的是正方体展开图相对面上的数字,掌握“正方体的展开图的特点”是解本题的关键.
5、##
【分析】
因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|,再根据反比例函数的图象所在的象限确定k的值,即可求出反比例函数的解析式.
【详解】
解:由图象上的点所构成的矩形PEOF的面积为4可知,
S=|k|=4,k=±4.
又由于反比例函数的图象在第二、四象限,k<0,
则k=-4,所以反比例函数的解析式为 .
故答案为: .
【点睛】
本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.
三、解答题
1、
(1)证明见解析
(2)
(3)
【分析】
(1)根据四边形,四边形都是平行四边形,得到和,然后证明,即可证明出;
(2)作于M点,设,首先根据,证明出四边形和四边形都是矩形,然后根据同角的余角相等得到,然后根据同角的三角函数值相等得到,即可表示出BF和FH的长度,进而可求出的值;
(3)过点E作于M点,首先根据题意证明出,得到,,然后根据等腰三角形三线合一的性质得到,设,根据题意表示出,,过点E作,交BD于N,然后由证明出,设,根据相似三角形的性质得出,然后由30°角所对直角边是斜边的一半得到,进而得到,解方程求出,然后表示出,根据勾股定理得到EH和EF的长度,即可求出的值.
(1)
解:∵四边形EFGH是平行四边形
∴
∴
∵四边形ABCD是平行四边形
∴
∴
在和中
∴
∴
∴
∴;
(2)
解:如图所示,作于M点,设
∵四边形和四边形都是平行四边形,
∴四边形和四边形都是矩形
∴
∴
∵
∴,
∴
∴
∴
∵
∴
由(1)得:
∴
∴;
(3)
解:如图所示,过点E作于M点
∵四边形ABCD是平行四边形
∴
∵
∴,即
∵
∴
∴
∴
∴
设
∵
∴
∴
∴
由(1)得:
∴
∴
过点E作,交BD于N
∵
∴
∴
∴
设
∴
∴
∵
∴
∵
∴
∴
∵
∴
∴
∴
解得:或(舍去)
∴
由勾股定理得:
∴.
【点睛】
此题考查了矩形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是熟练掌握矩形的性质,相似三角形的性质和判定,勾股定理,根据题意正确作出辅助线求解.
2、(1)正方体;(2)长方体;(3)三棱柱;(4)四棱锥;(5)圆柱;(6)三棱柱.
【分析】
根据立体图形的展开图的知识点进行判断,正方体由六个正方形组成,长方体由两个矩形组成,且每个对面的形状和大小一样;三棱柱由5个面组成;四棱锥由四个三角形和一个矩形组成;圆柱由一个长方形和两个圆组成;三棱柱由两个三角形和四个矩形组成.
【详解】
解:由分析如下:(1)正方体;(2)长方体;(3)三棱柱;(4)四棱锥;(5)圆柱;(6)三棱柱.
故答案为:正方体;长方体;三棱柱;四棱锥;圆柱;三棱柱.
【点睛】
此题考查了几何体的展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.
3、
【分析】
先移项,再提取公因式 利用因式分解法解方程即可.
【详解】
解:(2x+1)2=x(2x+1)
即
或
解得:
【点睛】
本题考查的是利用因式分解法解一元二次方程,掌握“提取公因式分解因式,再化为两个一次方程”是解本题的关键.
4、见详解.
【分析】
用AAS证明△ABF≌△DCE即可.
【详解】
解:∵
又∵∠A=∠D,∠B=∠C,
∴△ABF≌△DCE(AAS).
【点睛】
本题考查了全等三角形的判定,证明BF=CE是解决本题的关键.
5、2 3
【分析】
点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值,据此即可得答案.
【详解】
∵点的坐标为,
∴点到轴的距离为,到轴的距离为.
故答案为:2;3
【点睛】
本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.
【真题汇编】2022年河南省周口市中考数学模拟定向训练 B卷(含答案解析): 这是一份【真题汇编】2022年河南省周口市中考数学模拟定向训练 B卷(含答案解析),共21页。试卷主要包含了已知,则的值为,若抛物线的顶点坐标为等内容,欢迎下载使用。
【真题汇编】2022年河南省郑州市中考数学模拟专项测试 B卷(含答案及解析): 这是一份【真题汇编】2022年河南省郑州市中考数学模拟专项测试 B卷(含答案及解析),共21页。试卷主要包含了已知点,下列计算错误的是,已知点D等内容,欢迎下载使用。
【历年真题】最新中考数学模拟专项测试 B卷(含答案及解析): 这是一份【历年真题】最新中考数学模拟专项测试 B卷(含答案及解析),共22页。试卷主要包含了要使式子有意义,则,若,则的值是,下列命题中,是真命题的是等内容,欢迎下载使用。