所属成套资源:八年级数学秘籍之三角形全等、轴对称及几何动态问题思维训练
八年级数学秘籍——探索“一线三等角”模型(原卷版)学案
展开这是一份八年级数学秘籍——探索“一线三等角”模型(原卷版)学案,共9页。学案主要包含了常见图形,典例解析,习题专练等内容,欢迎下载使用。
探索“一线三等角”模型
【常见图形】
【典例解析】
【例1】(2020·广东高州期中)如图1,已知∠ACB=90°,AC=BC,BD⊥DE,AE⊥DE,垂足分别为D、E.(这几何模型具备“一线三直角”)如下图1:
(1)①请你证明:△ACE≌△CBD;②若AE=3,BD=5,求DE的长;
(2)迁移:如图2:在等腰Rt△ABC中,且∠C=90°,CD=2,BD=3,D、E分别是边BC,AC上的点,将DE绕点D顺时针旋转90°,点E刚好落在边AB上的点F处,则CE= .(不要求写过程)
【例2】(2020·四川巴州期末)某建筑测量队为了测量一栋居民楼ED的高度,在大树AB与居民楼ED之间的地面上选了一点C,使B,C,D在一直线上,测得大树顶端A的视线AC与居民楼顶端E的视线EC的夹角为90°,若AB=CD=12米,BD=64米,请计算出该居民楼ED的高度.
【例3】(2020·潮州市潮安区月考)问题背景:
(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.
拓展延伸:
(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE、BD、CE三条线段的数量关系.(不需要证明)
实际应用:
(3)如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A的坐标为(-6,3),请直接写出B点的坐标.
【例4】(2020·广东广州月考)如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是___________.
【例5】(2020·曲阜月考)如图,已知点P(2m-1,6m-5)在第一象限角平分线 OC上,-直角顶点P在OC上,角两边与x轴y轴分别交于A点,B点,则OA+BO=______________
【习题专练】
1.(2020·广东英德期末)(1)如图1,已知:在中,,,直线经过点,,垂足分别为点、.证明:①;②.
图1
(2)如图2,将(1)中的条件改为:在中,,、、三点都在上,并且有,其中为任意锐角或钝角.请问结论是否成立?如成立,请你给出证明;若不成立,请说明理由.
图2
(3)如图3,过的边、向外作正方形和正方形,是边上的高,延长交于点,求证:是的中点.
图3
2.(2020·湖北武汉月考)如图,A点的坐标为(0,3),B点的坐标为(-3.0),D为x轴上的一个动点,AE⊥AD,且AE=AD,连接BE交y轴于点M
(1)若D点的坐标为(-5.0),求E点的坐标:
(2)求证:M为BE的中点
(3)当D点在x轴上运动时,探索:为定值
3.(2019·黑龙江齐齐哈尔期中)观察推理:如图1,△ABC中,∠ACB=90°,AC=BC,直线l过点C,点A、B在直线l同侧,BD⊥l,AE⊥l,垂足分别为D、E.
(1)求证:△AEC≌△CDB;
(2)类比探究:如图2,Rt△ABC中,∠ACB=90°,AC=6,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,求△AB′C的面积;
(3)拓展提升:如图3,∠E=60°,EC=EB=4cm,点O在BC上,且OC=3cm,动点P从点E沿射线EC以2cm/s速度运动,连结OP,将线段OP绕点O逆时针旋转120°得到线段OF.要使点F恰好落在射线EB上,求点P运动的时间.
4.(2020·三台县月考)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板,点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.
5.(2019·舞钢市月考)小强为了测量一幢楼的高度AB,在旗杆CD与楼之间选定一点P(如图).测得视线PC与地面所成的夹角∠DPC=36°,视线PA与地面所成的夹角∠APB=54°,已知旗杆的高度CD是10米,量得P到楼底距离PB也是10米,量得旗杆与楼之间距离为DB=25米,小强计算出了楼高,(旗杆与楼都和地面垂直)请问楼高AB是_____________米.
6.(2019·海口市月考)在中,,,直线经过点,且于,于.
(1)当直线绕点旋转到图1的位置时,
①求证:≌;
②求证:;
(2)当直线绕点旋转到图2的位置时,(1)中的结论②还成立吗?若成立,请给出证明;若不成立,说明理由.
7.(2019·齐齐哈尔市期中)综合与探究
如图,等腰直角中,,,现将该三角形放置在平面直角坐标系中,点坐标为,点坐标为.
(1)过点作轴,求的长及点的坐标;
(2)连接,若为坐标平面内异于点的点,且以、、为顶点的三角形与全等,请直接写出满足条件的点的坐标;
(3)已知,试探究在轴上是否存在点,使是以为腰的等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
相关学案
这是一份【期末满分攻略】2022-2023学年北师大版七年级数学下册讲学案-专题15 “一线三等角”模型及其变形的应用(原卷版+解析版),文件包含期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题15“一线三等角”模型及其变形的应用解析版docx、期末满分攻略2022-2023学年北师大版七年级数学下册讲学案-专题15“一线三等角”模型及其变形的应用原卷版docx等2份学案配套教学资源,其中学案共26页, 欢迎下载使用。
这是一份八年级数学秘籍——几何图形中的分类讨论思想(原卷版)学案,共13页。学案主要包含了典例解析,变式1-1,变式1-2,变式2-1,变式3-1,变式3-2,习题专练等内容,欢迎下载使用。
这是一份八年级数学秘籍——探索“手拉手”模型(解析版)学案,共28页。学案主要包含了常见模型,典例解析,习题专练,拓展提升等内容,欢迎下载使用。