[中考专题]2022年山东省枣庄市薛城区中考数学模拟测评 卷(Ⅰ)(精选)
展开2022年山东省枣庄市薛城区中考数学模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、根据表中的信息判断,下列语句中正确的是( )
15 | 15.1 | 15.2 | 15.3 | 15.4 | 15.5 | 15.6 | 15.7 | 15.8 | 15.9 | 16 | |
225 | 228.01 | 231.04 | 234.09 | 237.16 | 240.25 | 243.36 | 246.49 | 249.64 | 252.81 | 256 |
A.
B.235的算术平方根比15.3小
C.只有3个正整数满足
D.根据表中数据的变化趋势,可以推断出将比256增大3.19
2、根据以下程序,当输入时,输出结果为( )
A. B. C. D.
3、一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是( )
A. B.
C. D.
4、如图,点,为线段上两点,,且,设,则关于的方程的解是( )
A. B. C. D.
5、一把直尺与一块直角三角板按下图方式摆放,若,则( )
A.52° B.53° C.54° D.63°
6、平面直角坐标系中,已知点,,其中,则下列函数的图象可能同时经过P,Q两点的是( ).
A. B.
C. D.
7、下列二次根式中,最简二次根式是( )
A. B. C. D.
8、某优秀毕业生向我校赠送1080本课外书,现用A、B两种不同型号的纸箱包装运送,单独使用B型纸箱比单独使用A型纸箱可少用6个;已知每个B型纸箱比每个A型纸箱可多装15本.若设每个A型纸箱可以装书x本,则根据题意列得方程为( )
A. B.
C. D.
9、如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC沿AC翻折,得到△ADC,再将△ADC沿AD翻折,得到△ADE,连接BE,则tan∠EBC的值为( )
A. B. C. D.
10、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、写出一个比1大且比2小的无理数______.
2、已知五边形是的内接正五边形,则的度数为______.
3、一杯饮料,第一次倒去全部的,第二次倒去剩下的 ……如此下去,第八次后杯中剩下的饮料是原来的________.
4、在平面直角坐标系中,直线l:与x轴交于点,如图所示依次作正方形、正方形、…、正方形,使得点、、、…在直线1上,点、、、…在y轴正半轴上,则点的坐标是________.
5、如图,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=20,则阴影部分的面积为____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在内部作射线和的平分线.
(1)请补全图形;
(2)若,,求的度数;
(3)若是的角平分线,,求的度数.
2、 “双减”政策实施以来,我校积极探寻更为合理的学生评价方案.班主任石老师对班级学生的学习生活等采取的是量化积分制.下面统计的是博学组和笃行组连续八周的量化积分,并将得到的数据制成如下的统计表:
量化积分统计表(单位:分)
周次 组别 | 一 | 二 | 三 | 四 | 五 | 六 | 七 | 八 |
博学组 | 12 | 14 | 16 | 14 | 14 | 13 | 15 | 14 |
笃行组 | 13 | 11 | 15 | 17 | 16 | 18 | 13 | 9 |
(1)请根据表中的数据完成下表
| 平均数 | 中位数 | 众数 | 方差 |
博学组 |
| 14 | 14 |
|
笃行组 | 14 |
|
| 8.25 |
(2)根据量化积分统计表中的数据,请在下图中画出笃行组量化积分的折线统计图.
(3)根据折线统计图中的信息,请你对这两个小组连续八周的学习生活情况作出一条简要评价.
3、计算:.
4、用若干个相同的小正方体摆成了右面的几何体,请画出这个几何体从正面、左面和上面看到的形状图.
5、如图,方格纸上每个小正方形的面积为1个单位.
(1)在方格纸上,请你以线段为边画正方形并计算所画正方形的面积,解释你的计算方法;
(2)请你在图上画出一个面积为5个单位正方形.
-参考答案-
一、单选题
1、C
【分析】
根据算术平方根的定义及表格中信息逐项分析即可.
【详解】
A.根据表格中的信息知:,
,故选项不正确;
B.根据表格中的信息知:,
∴235的算术平方根比15.3大,故选项不正确;
C.根据表格中的信息知:,
正整数或242或243,
只有3个正整数满足,故选项正确;
D.根据表格中的信息无法得知的值,
不能推断出将比256增大3.19,故选项不正确.
故选:C.
【点睛】
本题是图表信息题,考查了算术平方根,关键是正确利用表中信息.
2、C
【分析】
根据流程图所示顺序,逐框分析代入求值即可.
【详解】
解:当输入时,
代入
代入,则输出
故选C
【点睛】
本题考查了程序流程图与代数式求值,正确代入求值是解题的关键.
3、A
【分析】
由平面图形的折叠及图形的对称性展开图解题.
【详解】
由第一次对折后中间有一个矩形,排除B、C;
由第二次折叠矩形正在折痕上,排除D;
故选:A.
【点睛】
本题考查的是学生的立体思维能力及动手操作能力,关键是由平面图形的折叠及图形的对称性展开图解答.
4、D
【分析】
先根据线段的和差运算求出的值,再代入,解一元一次方程即可得.
【详解】
解:,
,
,
,
解得,
则关于的方程为,
解得,
故选:D.
【点睛】
本题考查了线段的和差、一元一次方程的应用,熟练掌握方程的解法是解题关键.
5、B
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,,
∴,
∴,
故选B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.
6、B
【分析】
先判断再结合一次函数,二次函数的增减性逐一判断即可.
【详解】
解:
同理:
当时,随的增大而减小,
由可得随的增大而增大,故A不符合题意;
的对称轴为: 图象开口向下,
当时,随的增大而减小,故B符合题意;
由可得随的增大而增大,故C不符合题意;
的对称轴为: 图象开口向上,
时,随的增大而增大,故D不符合题意;
故选B
【点睛】
本题考查的是一次函数与二次函数的图象与性质,掌握“一次函数与二次函数的增减性”是解本题的关键.
7、D
【分析】
根据最简二次根式的条件分别进行判断.
【详解】
解:A.,不是最简二次根式,则A选项不符合题意;
B.,不是最简二次根式,则B选项不符合题意;
C.,不是最简二次根式,则C选项不符合题意;
D.是最简二次根式,则D选项符合题意;
故选:D.
【点睛】
题考查了最简二次根式:掌握最简二次根式的条件(被开方数的因数是整数或字母,因式是整式;被开方数中不含有可化为平方数或平方式的因数或因式)是解决此类问题的关键.
8、C
【分析】
由每个B型包装箱比每个A型包装箱可多装15本课外书可得出每个B型包装箱可以装书(x+15)本,利用数量=总数÷每个包装箱可以装书数量,即可得出关于x的分式方程,此题得解.
【详解】
解:∵每个A型包装箱可以装书x本,每个B型包装箱比每个A型包装箱可多装15本课外书,
∴每个B型包装箱可以装书(x+15)本.
依题意得:
故选:C.
【点睛】
本题考查了由实际问题抽象出分式方程,找准等量关系,解题的关键是正确列出分式方程.
9、A
【分析】
解:如图,连接,交于 过作于 先求解 设 再利用勾股定理构建方程组 ,再解方程组即可得到答案.
【详解】
解:如图,连接,交于 过作于
由对折可得:
设
解得: 或 (舍去)
故选A
【点睛】
本题考查的是轴对称的性质,勾股定理的应用,一元二次方程的解法,锐角的正切,作出适当的辅助线构建直角三角形是解本题的关键.
10、B
【分析】
先求出,再根据中点求出,即可求出的长.
【详解】
解:∵,
∴,,
∵点是线段的中点,
∴,
,
故选:B.
【点睛】
本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.
二、填空题
1、故答案为:
【点睛】
本题以程序为背景考查了求代数式的值,关键是弄清楚图示给出的计算程序.
3.答案不唯一,如、等
【分析】
根据无理数的大小比较和无理数的定义写出范围内的一个数即可.
【详解】
解:一个比1大且比2小的无理数有,等,
故答案为:答案不唯一,如、等.
【点睛】
本题考查了对估算无理数和无理数的定义的应用,注意:答案不唯一.
2、72°度
【分析】
根据正多边形的中心角的计算公式: 计算即可.
【详解】
解:∵五边形ABCDE是⊙O的内接正五边形,
∴五边形ABCDE的中心角∠AOB的度数为 =72°,
故答案为:72°.
【点睛】
本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:是解题的关键.
3、
【分析】
采用枚举法,计算几个结果,从结果中寻找变化的规律.
【详解】
设整杯饮料看成1,列表如下:
次数 | 倒出量 | 剩余量 |
第1次 | ||
第2次 | ||
第3次 | ||
第4次 |
故第8次剩下的饮料是原来的.
故答案为:.
【点睛】
本题考查了有理数幂的运算,正确寻找变化的规律是解题的关键.
4、
【分析】
根据一次函数图象上点的坐标特征结合正方形的性质可得出点A1、B1的坐标,同理可得出A2、A3、A4、A5、…及B2、B3、B4、B5、…的坐标,根据点的坐标的变化可找出变化规律“Bn(2n-1,2n-1)(n为正整数)”,依此规律即可得出结论.
【详解】
解:当y=0时,有x-1=0,
解得:x=1,
∴点A1的坐标为(1,0).
∵四边形A1B1C1O为正方形,
∴点B1的坐标为(1,1).
同理,可得出:A2(2,1),A3(4,3),A4(8,7),A5(16,15),…,
∴B2(2,3),B3(4,7),B4(8,15),B5(16,31),…,
∴Bn(2n-1,2n-1)(n为正整数),
故答案为:
【点睛】
本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“Bn(2n-1,2n-1)(n为正整数)”是解题的关键.
5、20
【分析】
根据阴影部分的面积等于两个正方形的面积之和减去空白的面积,列式化简,再把a+b=10,ab=20代入计算即可.
【详解】
解:∵大小两个正方形边长分别为a、b,
∴阴影部分的面积S=a2+b2a2(a+b)ba2b2ab;
∵a+b=10,ab=20,
∴Sa2b2ab
(a+b)2ab
10220
=20.
故答案为:20.
【点睛】
本题考查了完全平方公式的几何背景,熟练掌握完全平方公式及正方形和三角形的面积计算是解题的关键.
三、解答题
1、
(1)图见解析
(2)
(3)
【分析】
(1)先根据射线的画法作射线,再利用量角器画的平分线即可得;
(2)先根据角的和差可得,再根据角平分线的定义即可得;
(3)先根据角平分线的定义可得,,再根据可得的度数,由此即可得.
(1)
解:补全图形如下:
(2)
解:,,
,
是的平分线,
;
(3)
解:是的角平分线,
,
是的平分线,
,
,
,
解得,
.
【点睛】
本题考查了画射线和角平分线、与角平分线有关的计算,熟练掌握角平分线的运算是解题关键.
2、
(1)见解析
(2)见解析
(3)博学组的学生学习生活更好
【分析】
(1)根据平均数,中位数,众数,方差的定义求解即可;
(2)根据题目所给数据画出对应的折线统计图即可;
(3)可从众数和方差的角度作评价即可.
(1)
解:由题意得博学组的平均数,
∴博学组的方差
把笃行组的积分从小到大排列为:9、11、13、13、15、16、17、18,
∴笃行组的中位数,
∵笃行组中13出现的次数最多,
∴笃行组的众数为13,
∴填表如下:
| 平均数 | 中位数 | 众数 | 方差 |
博学组 | 14 | 14 | 14 | 1.25 |
笃行组 | 14 | 14 | 13 | 8.25 |
(2)解:如图所示,即为所求;
(3)
解:由(1)可知,博学组和笃行组的平均数和中位数都相同,但是博学组的众数大于笃行组的众数,博学组的方差小于笃行组的方差,
∴可知博学组的学生学习生活更好.
【点睛】
本题主要考查了求平均数,众数,中位数,方差,画折线统计图,用方差和众数作出评价等等,熟知相关知识是解题的关键.
3、
【分析】
根据完全平方公式及平方差公式,然后再合并同类项即可.
【详解】
解:原式
.
【点睛】
本题考查了完全平方公式及平方差公式,属于基础题,计算过程中细心即可.
4、见解析
【分析】
观察图形可知,从正面看到的图形是3列,从左往右正方形的个数依次为1,1,2;从左面看到的图形是3列,从左往右正方形的个数依次为2,1,1;从上面看到的图形是3列,从左往右正方形的个数依次为1,1,3;由此分别画出即可.
【详解】
解:如图所示:
【点睛】
本题考查了从不同方向看几何体,做此类题时,应认真审题,根据看到的形状即可解答.
5、
(1)见解析.
(2)见解析.
【解析】
(1)
(1)利用垂直以及格点正方形即可画出图形,如下图所示:
正方形的面积为40
方法:设点A下方两格处的点为C,连接AC、BC,
由格点正方形性质可知:,
在中,由勾股定理可知:
故正方形面积为:.
(2)
解:利用勾股定理及格点正方形,画出长为的边,以该边画出正方形即可,如下图所示:
【点睛】
本题主要是考查了勾股定理在格点画图问题的应用,熟练根据格点正方形以及勾股定理,求出对应斜边长,这是解决该题的关键.
2023年山东省枣庄市薛城区舜耕中学中考数学模拟试卷(含解析): 这是一份2023年山东省枣庄市薛城区舜耕中学中考数学模拟试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
【真题汇总卷】2022年山东省枣庄市薛城区中考数学模拟专项测试 B卷(含答案及解析): 这是一份【真题汇总卷】2022年山东省枣庄市薛城区中考数学模拟专项测试 B卷(含答案及解析),共21页。试卷主要包含了下列说法正确的是,方程的解是.,在下列运算中,正确的是等内容,欢迎下载使用。
【真题汇编】2022年山东省枣庄市薛城区中考数学模拟定向训练 B卷(含答案及详解): 这是一份【真题汇编】2022年山东省枣庄市薛城区中考数学模拟定向训练 B卷(含答案及详解),共34页。试卷主要包含了有理数等内容,欢迎下载使用。