【高频真题解析】2022年辽宁省沈阳市中考数学二模试题(含答案解析)
展开2022年辽宁省沈阳市中考数学二模试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点 是 的角平分线 的中点, 点 分别在 边上,线段 过点 , 且 ,下列结论中, 错误的是( )
A. B. C. D.
2、下列各数中,是无理数的是( )
A.0 B. C. D.3.1415926
3、已知点与点关于y轴对称,则的值为( )
A.5 B. C. D.
4、数学活动课上,同学们想测出一个残损轮子的半径,小宇的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接,再作出的垂直平分线,交于点C,交于点D,测出的长度,即可计算得出轮子的半径.现测出,则轮子的半径为( )
A. B. C. D.
5、如图,在中,.分别以点A,B为圆心,大于的长为半径画弧.两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若,则的度数是( )
A.22° B.24° C.26° D.28°
6、如图,的三个顶点和它内部的点,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,,…,,把分成( )个互不重叠的小三角形.
A. B. C. D.
7、在下列运算中,正确的是( )
A.a3•a2=a6 B.(ab2)3=a6b6
C.(a3)4=a7 D.a4÷a3=a
8、将正方体的表面分别标上数字1,2,3,并在它们的对面分别标上一些负数,使它的任意两个相对面的数字之和为0,将这个正方体沿某些棱剪开,得到以下的图形,这些图形中,其中的x对应的数字是﹣3的是( )
A. B.
C. D.
9、如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC沿AC翻折,得到△ADC,再将△ADC沿AD翻折,得到△ADE,连接BE,则tan∠EBC的值为( )
A. B. C. D.
10、根据表中的信息判断,下列语句中正确的是( )
15 | 15.1 | 15.2 | 15.3 | 15.4 | 15.5 | 15.6 | 15.7 | 15.8 | 15.9 | 16 | |
225 | 228.01 | 231.04 | 234.09 | 237.16 | 240.25 | 243.36 | 246.49 | 249.64 | 252.81 | 256 |
A.
B.235的算术平方根比15.3小
C.只有3个正整数满足
D.根据表中数据的变化趋势,可以推断出将比256增大3.19
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图是某个几何体的表面展开图,若围成几何体后,与点E重合的两个点是______.
2、如图,邮局在学校(______)偏(______)(______)°方向上,距离学校是(______)米.
3、已知f(x)=,那么f()=___.
4、如图,三角形纸片中,点、、分别在边、、上,.将这张纸片沿直线翻折,点与点重合.若比大,则__________.
5、写出一个比1大且比2小的无理数______.
三、解答题(5小题,每小题10分,共计50分)
1、一位同学在阅读课外书的时候,学到了一种速算方法,也让我们一起来看看吧!,他发现这样的数对一共有50对,且每一对数和都101,所以原式;同样地,
+…+),这样的数对一共有25对,且每一对数和都是102,所以原式;
(1)请仔细观察以上算式的特点及运算规律,请你运用你的发现看看下列式子哪些具有上述特点,能运用上述规律来运算,并把这样式子的结果算出来:
①;
②;
③;
(2)在上面的①式中,请你通过增加或减少和中最后面奇数的个数,探寻本题计算规律,请用一个含字母n的式子表示你的发现;
(3)另外,该同学还有一个有趣发现:,,,,…,以此类推,你能写出第50个式子的结果并写出等式左边第一个数吗?说出你的理由.
2、在平面直角坐标系中二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点.
(1)求A、B两点的坐标;
(2)已知点D在二次函数的图象上,且点D和点C到x轴的距离相等,求点D的坐标.
3、由几个小立方体搭成的几何体从上面看得到的形状图如图所示,小正方形中的数字表示在该位置的小立方体的个数,请画出从正面、左面看到的这个几何体的形状图.
4、先化简,再求值:,其中,.
5、用若干大小相同的小正方体搭成一个几何体,使得从正面和从上面看到的这个几何体的形状图如图所示,请你按此要求搭建一个几何体,画出从左边看到的它的形状图,并在从上面看得到的图形上标注小正方形的个数.
-参考答案-
一、单选题
1、D
【分析】
根据AG平分∠BAC,可得∠BAG=∠CAG,再由点 是 的中点,可得 ,然后根据,可得到△DAE∽△CAB,进而得到△EAF∽△BAG,△ADF∽△ACG,即可求解.
【详解】
解:∵AG平分∠BAC,
∴∠BAG=∠CAG,
∵点 是 的中点,
∴ ,
∵,∠DAE=∠BAC,
∴△DAE∽△CAB,
∴ ,
∴∠AED=∠B,
∴△EAF∽△BAG,
∴ ,故C正确,不符合题意;
∵,∠BAG=∠CAG,
∴△ADF∽△ACG,
∴ ,故A正确,不符合题意;D错误,符合题意;
∴,故B正确,不符合题意;
故选:D
【点睛】
本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
2、B
【分析】
无限不循环小数叫做无理数,有限小数或无限循环小数叫做有理数,根据无理数的定义即可作出判断.
【详解】
A.0是整数,属于有理数,故本选项不合题意;
B.是无理数,故本选项符合题意;
C.是分数,属于有理数,故本选项不合题意;
D.3.1415926是有限小数,属于有理数,故本选项不合题意;
故选:B.
【点睛】
本题考查了无理数,掌握无理数的含义是解题的关键.
3、A
【分析】
点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.
【详解】
解:由题意知:
解得
∴
故选A.
【点睛】
本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.
4、C
【分析】
由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径即可.
【详解】
解:设圆心为O,连接OB.
Rt△OBC中,BC=AB=20cm,
根据勾股定理得:
OC2+BC2=OB2,即:
(OB-10)2+202=OB2,
解得:OB=25;
故轮子的半径为25cm.
故选:C.
【点睛】
本题考查垂径定理,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.
5、B
【分析】
由尺规作图痕迹可知MN垂直平分AB,得到DA=DB,进而得到∠DAB=∠B=50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC,然后计算∠BAC-∠DAB即可.
【详解】
解:∵,
∴∠B=∠C=52°,∠BAC=180°-∠B-∠C=180°-52°-52°=76°,
由尺规作图痕迹可知:MN垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=52°,
∴∠CAD=∠BAC-∠DAB=76°-52°=24°.
故选:B.
【点睛】
本题考查了线段垂直平分线的尺规作图及等腰三角形的性质等,熟练掌握线段垂直平分线的性质及等腰三角形的性质是解决本类题的关键.
6、B
【分析】
从前三个内部点可总结规律,即可得三角形内部有n个点时有个互不重叠的小三角形.
【详解】
由,,三个内部点可总结出规律每增加一个内部点三角形内部增加两个小三角形,
∴的三个顶点和它内部的点,,,…,,把分成个互不重叠的小三角形.
故选:B.
【点睛】
本题考查了图形类规律问题,图形规律就是根据所给出的图形的结构特特征,需要认真分析观察、分析、归纳,从图形所蕴含的数字信息总结出一般的数式规律,然后再应用规律做题.用代数式表示数字或图形的规律,有其自身的解题规律,掌握其正确的解题方法,这类题目将会迎刃而解.
7、D
【分析】
由;;,判断各选项的正误即可.
【详解】
解:A中,错误,故本选项不合题意;
B中,错误,故本选项不合题意;
C中,错误,故本选项不合题意;
D中,正确,故本选项符合题意.
故选:D.
【点睛】
本题考查了同底数幂的乘除,积的乘方,幂的乘方等知识.解题的关键在于正确求解.
8、A
【分析】
根据正方体的表面展开图,相对的面之间一定相隔一个正方形,求出各选项的x的值即可.
【详解】
解: A.x=-3
B.x=-2
C.x=-2
D.x=-2
故答案为:A
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
9、A
【分析】
解:如图,连接,交于 过作于 先求解 设 再利用勾股定理构建方程组 ,再解方程组即可得到答案.
【详解】
解:如图,连接,交于 过作于
由对折可得:
设
解得: 或 (舍去)
故选A
【点睛】
本题考查的是轴对称的性质,勾股定理的应用,一元二次方程的解法,锐角的正切,作出适当的辅助线构建直角三角形是解本题的关键.
10、C
【分析】
根据算术平方根的定义及表格中信息逐项分析即可.
【详解】
A.根据表格中的信息知:,
,故选项不正确;
B.根据表格中的信息知:,
∴235的算术平方根比15.3大,故选项不正确;
C.根据表格中的信息知:,
正整数或242或243,
只有3个正整数满足,故选项正确;
D.根据表格中的信息无法得知的值,
不能推断出将比256增大3.19,故选项不正确.
故选:C.
【点睛】
本题是图表信息题,考查了算术平方根,关键是正确利用表中信息.
二、填空题
1、A和C
【分析】
根据题意可知该几何体的展开图是四棱锥的平面展开图,找出重合的棱,即可找到与点E重合的两个点.
【详解】
折叠之后CD和DE重合为一条棱,C点和E点重合;AH和EF重合为一条棱,A点和E点重合.
所以与点E重合的两个点是A点和C点.
故答案为:A和C.
【点睛】
此题考查的是四棱锥的展开图,解决此题的关键是运用空间想象能力把展开图折成四棱锥,找到重合的点.
2、北
东 45 1000
【分析】
图上距离1厘米表示实际距离200米,于是即可求出它们之间的实际距离,再根据它们之间的方向关系,即可进行解答.
【详解】
解:邮局在学校北偏东45°的方向上,距离学校 1000米.
故答案为:北,东,45,1000.
【点睛】
此题主要考查了方位角,以及线段比例尺的意义的理解和灵活应用.
3、##
【分析】
把代入函数解析式进行计算即可.
【详解】
解:f(x)=,
故答案为:
【点睛】
本题考查的是已知自变量的值求解函数值,理解的含义是解本题的关键.
4、
【分析】
由折叠可知,由平角定义得 + =120°,再根据比大,得到 - =,即可解得的值.
【详解】
解:由折叠可知,
∵ + + =180°,
∴ + =120°,
∴ =120°-,
∵比大,
∴ - =,即120°- - =
解得 =,
故答案为:
【点睛】
此题考查折叠的性质、平角的定义及一元一次方程的解法,掌握相应的性质和解法是解答此题的关键.
5、故答案为:
【点睛】
本题以程序为背景考查了求代数式的值,关键是弄清楚图示给出的计算程序.
3.答案不唯一,如、等
【分析】
根据无理数的大小比较和无理数的定义写出范围内的一个数即可.
【详解】
解:一个比1大且比2小的无理数有,等,
故答案为:答案不唯一,如、等.
【点睛】
本题考查了对估算无理数和无理数的定义的应用,注意:答案不唯一.
三、解答题
1、
(1)①;②;③
(2)
(3)第50个式子为: 等式的左边第1个数为:
【分析】
(1)①根据阅读部分提供的方法可得:一共有个数,分成50组,每组的和为200,从而可得答案;②根据阅读部分提供的方法可得:一共有个数,分成25组,每组的和为202,从而可得答案;③由可得前面两个数的和等于后一个数,再计算即可.
(2)分两种情况讨论:当为偶数时,当为奇数时,再利用从具体到一般的探究方法矩形探究即可;
(3)由,,, ,可发现左边第一个数有: 归纳可得:第行第一个数为: 右边为 后续的奇数为: 再应用规律,从而可得答案.
(1)
解:①
②
③
(2)
解:
当为偶数时,
当为奇数时,
综上:(为正整数)
(3)
解: ,,,,
可发现左边第一个数有:
归纳可得:第行第一个数为: 右边为
后续的奇数为:
所以第50行第一个数为:
后续奇数为:
所以第50个式子为:
等式的左边第1个数为:
【点睛】
本题考查的是有理数的加法与乘法的运算,乘方运算,数字运算规律的探究,列代数式,掌握“从具体到一般的探究方法得到规律并运用规律解决问题”是解本题的关键.
2、
(1)A(1,0),B(5,0)
(2)(6,5)
【分析】
(1)先将点C的坐标代入解析式,求得a;然后令y=0,求得x的值即可确定A、B的坐标;
(2)由可知该抛物线的顶点坐标为(3,-4),又点D和点C到x轴的距离相等,则点D在x轴的上方,设D的坐标为(d,5),然后代入解析式求出d即可.
(1)
解:∵二次函数的图象与y轴交于
∴,解得a=1
∴二次函数的解析式为
∵二次函数的图象与x轴交于A、B两点
∴令y=0,即,解得x=1或x=5
∵点A在点B的左侧
∴A(1,0),B(5,0).
(2)
解:由(1)得函数解析式为
∴抛物线的顶点为(3,-4)
∵点D和点C到x轴的距离相等,即为5
∴点D在x轴的上方,设D的坐标为(d,5)
∴,解得d=6或d=0
∴点D的坐标为(6,5).
【点睛】
本题主要考查了二次函数与坐标轴的交点、二次函数抛物线的顶点、点到坐标轴的距离等知识点,灵活运用相关知识成为解答本题的关键.
3、作图见详解
【分析】
根据简单组合体的三视图画出相应的图形即可.
【详解】
解:从正面看到的该几何体的形状如图所示:
从左面看到的该几何体的形状如图所示:
【点睛】
本题考查简单组合体的三视图,理解“长对正,宽相等,高平齐”画三视图的关键.
4、ab,1
【分析】
根据分式的减法和除法可以化简题目中的式子,然后将a,b的值代入化简后的式子即可解答本题.
【详解】
解:
;
当,时,原式=
【点睛】
本题考查分式的化简求值、分式的混合运算,需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.
5、见解析
【分析】
观察从正面看和从上面看得到的图形可知,从左边看到的图形应该有2层3列,画出图形即可;再根据从左边看到的它的形状图,判断小正方体数量,并在从上面看得到的图形上标注小正方形的个数即可.
【详解】
(答案不唯一)
从左边看到的它的形状图,如图,
从上面看得到的图形上标注小正方形的个数,如图,
【点睛】
本题考查从不同方向看几何体,判断几何体的组成.根据题意确定从左边看到的层数和列数是解答本题的关键.
2023年辽宁省沈阳市中考数学二模试卷(含解析): 这是一份2023年辽宁省沈阳市中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年辽宁省沈阳市中考数学二模试卷(含解析): 这是一份2023年辽宁省沈阳市中考数学二模试卷(含解析),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2020年辽宁省沈阳市中考数学二模试题(解析版+原卷板): 这是一份2020年辽宁省沈阳市中考数学二模试题(解析版+原卷板),文件包含精品解析2020年辽宁省沈阳市中考数学二模试题解析版docx、精品解析2020年辽宁省沈阳市中考数学二模试题原卷版docx等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。