【高频真题解析】2022年重庆市巴南区中考数学考前摸底测评 卷(Ⅱ)(精选)
展开这是一份【高频真题解析】2022年重庆市巴南区中考数学考前摸底测评 卷(Ⅱ)(精选),共21页。试卷主要包含了如图所示,该几何体的俯视图是,-6的倒数是,下列各点在反比例的图象上的是,下列计算中正确的是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知线段AB、CD,AB<CD,如果将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,这时点B的位置必定是( )
A.点B在线段CD上(C、D之间)
B.点B与点D重合
C.点B在线段CD的延长线上
D.点B在线段DC的延长线上
2、定义一种新运算:,,则方程的解是( )
A.,B.,C.,D.,
3、用配方法解一元二次方程x2+3=4x,下列配方正确的是( )
A.(x+2)2=2B.(x-2)2=7C.(x+2)2=1D.(x-2)2=1
4、已知,,在二次函数的图象上,,,则的大小关系是( )
A.B.C.D.
5、如图所示,该几何体的俯视图是
A.B.
C.D.
6、-6的倒数是( )
A.-6B.6C.±6D.
7、下列各点在反比例的图象上的是( )
A.(2,-3)B.(-2,3)C.(3,2)D.(3,-2)
8、下列计算中正确的是( )
A.B.C.D.
9、如图,在矩形ABCD中,AB=2,BC=4,对角线AC,BD相交于点O,OE⊥AC交BC于点E,EF⊥BD于点F,则OE+EF的值为( )
A.B.2C.D.2
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
10、今年,网络购物已经成为人们生活中越来越常用的购物方式.元旦期间,某快递分派站有包裹若干件需快递员派送,若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件,设该分派站有x名快递,则可列方程为( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在Rt△ABC中,∠BAC=90°,AB=6,D是边BC上一点,连接AD.将△ABD沿直线AD翻折后,点B恰好落在边AC上B'点,若AB':B'C=3:2,则点D到AC的距离是 _____.
2、若机器人在数轴上某点第一步从向左跳1个单位到,第二步从向右跳2个单位到,第三步从向左跳3个单位到,第四步从向右跳4个单位到,按以上规律跳2018步,机器人落在数轴上的点,且所表示的数恰好是2019,则机器人的初始位置所表示的数是__________.
3、2021年5月11日,国新办举行新闻发布会公布第七次全国人口普查主要数据结果,全国人口共141147万人,请将141147万用科学记数法表示为 ______________.
4、已知x2﹣4x﹣1=0,则代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2=_____.
5、背面完全相同的四张卡片,正面分别写着数字-4,-1,2,3,背面朝上并洗匀,从中随机抽取一张,将卡片上的数字记为,再从余下的卡片中随机抽取一张,将卡片上的数字记为,则点在第四象限的概率为__________.
三、解答题(5小题,每小题10分,共计50分)
1、在平面直角坐标系中,对于点,,将点关于直线对称得到点,当时,将点向上平移个单位,当时,将点向下平移个单位,得到点,我们称点为点关于点的对称平移点.
例如,如图已知点,,点关于点的对称平移点为.
(1)已知点,,
①点关于点的对称平移点为________(直接写出答案).
②若点为点关于点的对称平移点,则点的坐标为________.(直接写出答案)
(2)已知点在第一、三象限的角平分线上,点的横坐标为,点的坐标为.点为点关于点的对称平移点,若以,,为顶点的三角形围成的面积为1,求的值.
2、已知过点的抛物线与坐标轴交于点A,C如图所示,连结AC,BC,AB,第一象限内有一动点M在抛物线上运动,过点M作交y轴于点P,当点P在点A上方,且与相似时,点M的坐标为______.
3、已知、互为相反数,、互为倒数,的绝对值为2,且,求的值.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
4、计算:.
5、用适当方法解下列一元二次方程:
(1)x2﹣6x=1;
(2)x2﹣4=3(x﹣2).
-参考答案-
一、单选题
1、A
【分析】
根据叠合法比较大小的方法始点重合,看终点可得点B在线段CD上,可判断A,点B与点D重合,可得线段AB=CD,可判断B,利用AB>CD,点B在线段CD的延长线上,可判断C, 点B在线段DC的延长线上,没有将AB移动到CD的位置,无法比较大小可判断D.
【详解】
解:将AB移动到CD的位置,使点A与点C重合,AB与CD叠合,如图,
点B在线段CD上(C、D之间),故选项A正确,
点B与点D重合,则有AB=CD与AB<CD不符合,故选项B不正确;
点B在线段CD的延长线上,则有AB>CD,与AB<CD不符合,故选项C不正确;
点B在线段DC的延长线上,没有将AB移动到CD的位置,故选项D不正确.
故选:A.
【点睛】
本题考查线段的比较大小的方法,掌握叠合法比较线段大小的方法与步骤是解题关键.
2、A
【分析】
根据新定义列出关于x的方程,解方程即可.
【详解】
解:由题意得,方程,化为,
整理得,,
,
∴,
解得:,,
故选A.
【点睛】
本题考查了公式法解一元二次方程,正确理解新运算、掌握公式法解一元二次方程的一般步骤是解题的关键.
3、D
【分析】
根据题意将方程常数项移到右边,未知项移到左边,然后两边都加上4,左边化为完全平方式,右边合并即可得到答案.
【详解】
,
整理得:,
配方得:,即.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:D.
【点睛】
本题考查用配方法解一元二次方程,掌握配方法的步骤是解题的关键.
4、B
【分析】
由抛物线开口向下且对称轴为直线x=-3知离对称轴水平距离越远,函数值越大,据此求解可得.
【详解】
解:∵二次函数中a=-1<0,
∴抛物线开口向下,有最大值.
∵x=-=-3,
∴离对称轴水平距离越远,函数值越小,
∵-3-(-3)<-1-(-3)<4-(-3),
∴.
故选:B.
【点睛】
本题主要考查二次函数图象上点的坐标特征,解题的关键是掌握二次函数的图象与性质.
5、D
【分析】
根据俯视图是从物体上面向下面正投影得到的投影图,即可求解.
【详解】
解:根据题意得:D选项是该几何体的俯视图.
故选:D
【点睛】
本题主要考查了几何体的三视图,熟练掌握三视图是观测者从三个不同位置观察同一个几何体,画出的平面图形;(1)主视图:从物体前面向后面正投影得到的投影图,它反映了空间几何体的高度和长度;(2)左视图:从物体左面向右面正投影得到的投影图,它反映了空间几何体的高度和宽度;(3)俯视图:从物体上面向下面正投影得到的投影图,它反应了空间几何体的长度和宽度是解题的关键.
6、D
【分析】
根据倒数的定义,即可求解.
【详解】
解:∵-6的倒数是-.
故选:D.
【点睛】
本题主要考查了倒数,关键是掌握乘积是1的两数互为倒数.
7、C
【分析】
根据反比例函数图象上点的坐标特征对各选项进行判断.
【详解】
解:∵2×(−3)=−6,−2×3=−6,3×(−2)=−6,
而3×2=6,
∴点(2,−3),(−2,3)(3,−2),不在反比例函数图象上,点(3,2)在反比例函数图象上.
故选:C.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
8、B
【分析】
根据绝对值,合并同类项和乘方法则分别计算即可.
【详解】
解:A、,故选项错误;
B、,故选项正确;
C、不能合并计算,故选项错误;
D、,故选项错误;
故选B.
【点睛】
本题考查了绝对值,合并同类项和乘方,掌握各自的定义和运算法则是必要前提.
9、A
【分析】
依据矩形的性质即可得到的面积为2,再根据,即可得到的值.
【详解】
解:,,
矩形的面积为8,,
,
对角线,交于点,
的面积为2,
,,
,即,
,
,
,
故选:A.
【点睛】
本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分.
10、B
【分析】
设该分派站有x个快递员,根据“若每个快递员派送7件,还剩6件;若每个快递员派送8件,还差1件”,即可得出关于x的一元一次方程,求出答案.
【详解】
解:设该分派站有x名快递员,则可列方程为:
7x+6=8x-1.
故选:B.
【点睛】
本题考查了由实际问题抽象出一元一次方程,找准等量关系是解题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
二、填空题
1、
【分析】
根据折叠的性质,可得 ,从而得到,再由AB':B'C=3:2,AB=6,可得,从而得到,进而得到,然后设点D到AC的距离是 ,即可求解.
【详解】
解:∵将△ABD沿直线AD翻折后,点B恰好落在边AC上B'点,
∴ ,
∴,
∵AB':B'C=3:2,AB=6,
∴,
∴ ,
∴ ,
∴,
设点D到AC的距离是 ,
∴ ,
解得: .
故答案为:
【点睛】
本题主要考查了图形的折叠,全等三角形的性质,根据题意得到是解题的关键.
2、1010
【分析】
由题意知每跳两次完毕向右进1个单位,按此规律跳了2018步后距出发地的距离是1009个单位,且在的右侧,根据所表示的数恰是2019,即可求得初始位置点所表示的数.
【详解】
解:设机器人在数轴上表示a的点开始运动,A0表示a,A1表示a-1,第二步从向右跳2个单位到,A2表示a-1+2= a+1,第三步从向左跳3个单位到,A3表示a+1-3,第四步从向右跳4个单位到,A4表示a+1-3+4= a+2,由题意知每跳两次完毕向右进1个单位,而,
所以电子跳蚤跳2018步后A2018表示的数为a+1009,
又因为表示2019,
∴a+1009=2019,
∴a=1010,
所以表示1010.
故答案为:1010.
【点睛】
本题考查了数轴、列代数式,简单一元一次方程,图形的变化规律,得到每跳动2次相对于原数+1的规律是解题的关键.
3、1.41147×109
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
绝对值大于1的数可以用科学记数法表示,一般形式为a×10n, 为正整数,且比原数的整数位数少1,据此可以解答.
【详解】
解:141147万=1411470000=1.41147×109.
故答案为:1.41147×109
【点睛】
本题考查用科学记数法表示较大的数,熟练掌握一般形式为 ,其中, 是正整数,解题的关键是确定 和 的值.
4、12
【分析】
化简代数式,将代数式表示成含有的形式,代值求解即可.
【详解】
解:
将代入得代数式的值为12
故答案为:12.
【点睛】
本题考查了完全平方公式、平方差公式以及代数式求值.解题的关键在于正确的化简代数式.
5、
【分析】
第四象限点的特征是,所以当横坐标只能为2或3,纵坐标只能是或,画出列表图或树状图,算出满足条件的情况,进一步求得概率即可.
【详解】
如下图:
∵第四象限点的坐标特征是,
∴满足条件的点分别是: ,共4种情况,
又∵从列表图知,共有12种等可能性结果,
∴点在第四象限的概率为.
故答案为:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【点睛】
本题主要考察概率的求解,要熟悉树状图或列表图的要点是解题关键.
三、解答题
1、
(1)①(6,4);②(3,-2)
(2)的值为
【分析】
(1)由题意根据点P为点M关于点N的对称平移点的定义画出图形,可得结论;
(2)根据题意分两种情形:m>0,m<0,利用三角形面积公式,构建方程求解即可.
(1)
解:①如图1中,点关于点的对称平移点为.
故答案为:.
②若点为点关于点的对称平移点,则点的坐标为.
故答案为:;
(2)
解:如图2中,当时,四边形是梯形,
,,,
,
或(舍弃),
当时,同法可得,
综上所述,的值为.
【点睛】
本题考查坐标与图形变化-旋转,三角形的面积公式,轴对称,平移变换等知识,解题的关键是理解新定义,学会利用参数构建方程解决问题.
2、或
【分析】
运用待定系数法求出函数关系式,求出点A,C的坐标,得出AC=,BC=,AB=,判断为直角三角形,且, 过点M作MG⊥y轴于G,则∠MGA=90°,设点M的横坐标为x,则MG=x,求出含x的代数式的点M的坐标,再代入二次函数解析式即可.
【详解】
把点B (4,1)代入,得:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴
抛物线的解析式为
令x=0,得y=3,
∴A(0,3)
令y=0,则
解得,
∴C(3,0)
∴AC=
∵B(4,1)
∴BC=,AB=
∴
∴为直角三角形,且,
过点M作MG⊥y轴于G,则∠MGA=90°,
设点M的横坐标为x,由M在y轴右侧可得x>0,则MG=x,
∵PM⊥MA,∠ACB=90°,
∴∠AMP=∠ACB=90°,
①如图,当∠MAP=∠CBA时,则△MAP∽△CBA,
∴
同理可得,
∴
∴AG=MG=x,则M(x,3+x),
把M(x,3+x)代入y=x2-x+3,得
x2-x+3=3+x,
解得,x1=0(舍去),x2=,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴3+x=3+
∴M(,);
②如图,当∠MAP=∠CAB时,则△MAP∽△CAB,
∴
同理可得,AG=3MG=3x,
则P(x,3+3x),
把P(x,3+3x)代入y=x2-x+3,
得x2-x+3=3+3x,
解得,x1=0(舍去),x2=11,
∴M(11,36),
综上,点M的坐标为(11,36)或(,)
【点睛】
本题考查了待定系数法求解析式,相似三角形的判定与性质等等知识,解题关键是注意分类讨论思想在解题过程中的运用.
3、5.
【分析】
利用相反数、倒数的性质,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.
【详解】
解:由已知可得,a+b=0,cd=1,x=2,
x2+(a+b)x+(-cd)x
=22+02+(-1)2
=4+0+1
=5.
【点睛】
本题考查了代数式求值,熟练掌握运算法则是解本题的关键.
4、
【分析】
由实数的运算法则计算即可.
【详解】
解:原式
.
【点睛】
本题考查了实数的混合运算,实数包括有理数和无理数,所以实数的混合运算包含了绝对值,幂的运算,开平方开立方等全部计算形式,仍满足先乘除后加减,有括号先算括号内的运算顺序.
5、
(1),
(2)
【分析】
(1)利用配方法求解即可;
(2)利用因式分解法求解即可.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)
解:两边同加.得,
即,
两边开平方,得,
即,或,
∴,;
(2)
解:,
∴,
∴,
∴,或,
解得.
【点睛】
本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.
-4
-1
2
3
-4
-1
2
3
相关试卷
这是一份【真题汇编】湖南省中考数学考前摸底测评 卷(Ⅱ)(精选),共24页。试卷主要包含了如图,有三块菜地△ACD,代数式的意义是等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年重庆市巴南区中考数学考前摸底测评 卷(Ⅱ)(含答案及详解),共20页。试卷主要包含了不等式组的最小整数解是,下列计算正确的是,已知和是同类项,那么的值是,下列关于整式的说法错误的是,下列说法正确的是等内容,欢迎下载使用。
这是一份【高频真题解析】2022年河北省邢台市中考数学考前摸底测评 卷(Ⅱ)(精选),共25页。试卷主要包含了某玩具店用6000元购进甲,下列运算中,正确的是,如图是三阶幻方的一部分,其每行等内容,欢迎下载使用。