![2021-2022学年度北师大版七年级数学下册第五章生活中的轴对称专题测试试卷(无超纲带解析)第1页](http://www.enxinlong.com/img-preview/2/3/12675241/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度北师大版七年级数学下册第五章生活中的轴对称专题测试试卷(无超纲带解析)第2页](http://www.enxinlong.com/img-preview/2/3/12675241/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年度北师大版七年级数学下册第五章生活中的轴对称专题测试试卷(无超纲带解析)第3页](http://www.enxinlong.com/img-preview/2/3/12675241/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
北师大版七年级下册第五章 生活中的轴对称综合与测试课后练习题
展开
这是一份北师大版七年级下册第五章 生活中的轴对称综合与测试课后练习题,共18页。试卷主要包含了下列图形中,不是轴对称图形的是,下列图形为轴对称图形的是,点P等内容,欢迎下载使用。
七年级数学下册第五章生活中的轴对称专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下四大通讯运营商的企业图标中,是轴对称图形的是( )A. B. C. D.2、下面每个选项中,左边和右边的符号作为图形成轴对称的是( )A.%% B.∵∴ C.≤≥ D.@@3、在平面直角坐标系中,点P(﹣2,3)关于x轴对称的点是( )A.(﹣2,﹣3) B.(2,3) C.(﹣3,﹣2) D.(2,﹣3)4、下列垃圾分类的标识中,是轴对称图形的是( )A.①② B.③④ C.①③ D.②④5、下列图形中,不是轴对称图形的是( )A. B. C. D.6、下列图形为轴对称图形的是( )A. B. C. D.7、点P( 5,-3 )关于y轴的对称点是 ( )A.(-5, 3 ) B.(-5,-3) C.(5,3 ) D.(5,-3 )8、如图,AD,BE,CF依次是ABC的高、中线和角平分线,下列表达式中错误的是( )A.AE=CE B.∠ADC=90° C.∠CAD=∠CBE D.∠ACB=2∠ACF9、下面所给的银行标志图中是轴对称图形的是( )A. B. C. D.10、如图,在2×2正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中可以画出与△ABC成轴对称的格点三角形的个数为( )A.2个 B.3个 C.4个 D.5个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、成轴对称的两个图形的主要性质是:(1)成轴对称的两个图形是________﹔(2)如果两个图形关于某条直线对称,那么对称轴是任何一对________的垂直平分线.2、在“线段、钝角、三角形、等腰三角形、圆”这五个图形中,是轴对称图形的有____个.3、如图,与关于直线对称,则∠B的度数为________°.4、如图,长方形纸片,点,分别在边,上,将长方形纸片沿着折叠,点落在点处,交于点.若比的4倍多12°,则______°.5、梯形(如图)是有由一张长方形纸折叠而成的,这个梯形的面积是(______).三、解答题(5小题,每小题10分,共计50分)1、如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD的顶点与点E都是格点.(1)作出四边形ABCD关于直线AC对称的四边形AB′CD′;(2)求四边形ABCD的面积;(3)若在直线AC上有一点P,使得P到D、E的距离之和最小,请作出点P的位置.2、如图所示,(1)作出ABC关于y轴对称的图形A1B1C1;(2)在x轴上确定一点P,使得PA+PC最小.3、已知:如图,AD是△ABC的角平分线,DE∥AC,DE交AB于点E,DF∥AB,DF交AC于点F.求证:DA平分∠EDF.4、如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在边BC上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称;(2)△AEF与四边形ABCD重叠部分的面积= ;(3)在AE上找一点P,使得PC+PD的值最小.5、如图,在边长为1的小正方形组成的网格中,点A,B,C均在小正方形的顶点上.(1)在图中画出与关于直线l成轴对称的;(2)在直线l上找一点P,使得的周长最小;(3)求的面积. -参考答案-一、单选题1、D【分析】根据轴对称图形的定义(在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形)进行判断即可得.【详解】解:根据轴对称图形的定义判断可得:只有D选项符合题意,故选:D.【点睛】题目主要考查轴对称图形的判断,理解轴对称图形的定义是解题关键.2、C【分析】轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,据此定义可直接得出.【详解】解:根据轴对称图形的定义可得出:C选项经过对折后可完全重合,故选:C.【点睛】题目主要考查轴对称图形的定义,深刻理解此定义是解题关键.3、A【分析】根据关于x轴对称的两点坐标关系:横坐标相等,纵坐标互为相反数,即可得出结论.【详解】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3)故选A.【点睛】本题考查的是求一个点关于x轴对称点的坐标,掌握关于x轴对称的两点坐标关系是解题的关键.4、B【详解】解:图③和④是轴对称图形,故选:B.【点睛】本题考查了轴对称图形,熟记轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.5、A【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据定义逐一判断即可得到答案.【详解】解:选项A中的图形不是轴对称图形,故A符合题意;选项B中的图形是轴对称图形,故B不符合题意;选项C中的图形是轴对称图形,故C不符合题意;选项D中的图形是轴对称图形,故D不符合题意;故选A【点睛】本题考查的是轴对称图形的识别,掌握“轴对称图形的定义”是解本题的关键.6、A【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置.7、B【分析】根据两点关于y轴对称的特征是两点的横坐标互为相反数,纵坐标不变即可求出点的坐标.【详解】解:∵所求点与点P(5,–3)关于y轴对称,∴所求点的横坐标为–5,纵坐标为–3,∴点P(5,–3)关于y轴的对称点是(–5,–3).故选B.【点睛】本题考查两点关于y轴对称的知识;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标相同.8、C【分析】根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中,连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高.求解即可.【详解】解:A、BE是△ABC的中线,所以AE=CE,故本表达式正确;B、AD是△ABC的高,所以∠ADC=90,故本表达式正确;C、由三角形的高、中线和角平分线的定义无法得出∠CAD=∠CBE,故本表达式错误;D、CF是△ABC的角平分线,所以∠ACB=2∠ACF,故本表达式正确.故选:C.【点睛】本题考查了三角形的高、中线和角平分线的定义,是基础题,熟记定义是解题的关键.9、B【分析】根据轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,逐项分析判断即可.【详解】解:A.不是轴对称图形,故该选项不正确,不符合题意;B.是轴对称图形,故该选项正确,符合题意;C. 不是轴对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了轴对称图形的识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、D【分析】在网格中画出轴对称图形即可.【详解】解:如图所示,共有5个格点三角形与△ABC成轴对称,故选:D【点睛】本题考查了轴对称,解题关键是熟练掌握轴对称的定义,准确画出图形.二、填空题1、全等的 对应点所连线段 【分析】根据轴对称的性质:成轴对称的两个图形全等,如果两个图形成轴对称,那么对称轴是对应点的垂直平分线,进行求解即可.【详解】解:(1)成轴对称的两个图形是全等的;(2)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.故答案为:全等的,对应点所连线段.【点睛】本题主要考查了轴对称图形的性质,解题的关键在于能够熟练掌握相关知识进行求解.2、【分析】轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,根据轴对称图形的概念求解即可.【详解】解:根据轴对称图形的定义可知:线段、钝角、等腰三角形和圆都是轴对称图形.而三角形不一定是轴对称图形.故答案为:4.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、105°【分析】根据轴对称的性质,轴对称图形全等,则∠A=∠A′,∠B=∠B′,∠C=∠C′,再根据三角形内角和定理即可求得.【详解】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∴∠C=∠C′=40°,∠A=∠A′=35°∴∠B=180°−35°−40°=105°.故答案为:105°.【点睛】本题考查了轴对称图形的性质,全等的性质,三角形内角和定理,理解轴对称图形的性质是解题的关键.4、124【分析】由折叠的性质及平角等于180°可求出∠BEH的度数,由AB∥CD,利用“两直线平行,同位角相等”可求出∠CHG的度数.【详解】解:由折叠的性质,可知:∠AEF=∠FEH.∵∠BEH=4∠AEF+12°,∠AEF+∠FEH+∠BEH=180°,∴∠AEF+∠AEF+4∠AEF+12°=180°,∴∠AEF=×(180°12°)=28°,∴∠BEH=4∠AEF+12°=124°.∵AB∥CD,∴∠CHG=∠BEH=124°.故答案为:124.【点睛】本题主要考查了平行线的性质、折叠的性质以及对顶角,牢记“两直线平行,同位角相等”是解题的关键.5、69【分析】通过观察图形可知,这个梯形上底是9cm,下底是(9+5)cm,高是6cm,根据梯形的面积公式:S=(a+b)h÷2,把数据代入公式解答【详解】解:根据折叠可得梯形上底是9cm,下底是(9+5)cm,高是6cm(9+9+5)×6÷2=23×6÷2=138÷2=69()故答案为:69【点睛】此题主要考查梯形面积公式的灵活运用,关键是熟记公式三、解答题1、(1)见解析;(2)9;(3)见解析【分析】(1)分别作出两点关于直线的对称点,连接,四边形AB′CD′即为所求四边形;(2)根据网格的特点,S四边形ABCD=S△ABD+S△BCD即可求得答案;(3)连接与直线交于点,由,可得P到D、E的距离之和最小,则点即为所求作的点.【详解】(1)如图,分别作出两点关于直线的对称点,连接,四边形AB′CD′即为所求四边形;(2)S四边形ABCD=S△ABD+S△BCD= =9;(3)如图, 连接与直线交于点,由,可得P到D、E的距离之和最小,则点即为所求作的点;【点睛】本题考查了轴对称作图,轴对称的性质,求网格中四边形的面积,掌握轴对称的性质是解题的关键.2、(1)见解析;(2)见解析【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)作点C关于x轴的对称点C′,再连接AC′,与x轴的交点即为所求.【详解】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,点P即为所求.【点睛】本题考查轴对称的综合应用,熟练掌握轴对称图形的性质及“两点之间线段最短”的基本事实是解题关键.3、见解析【分析】根据角平分线的定义可得∠DAE=∠DAF,再根据两直线平行,内错角相等可得∠ADE=∠DAF,∠ADF=∠DAE,从而得解.【详解】解:∵DE∥AC,∴∠ADE=∠DAF,∵DF∥AB,∴∠ADF=∠DAE,又∵AD是△ABC的角平分线,∴∠DAE=∠DAF,∴∠ADE=∠ADF. DA平分∠EDF.【点睛】本题综合考查了平行线和角平分线的性质,注意等量代换的应用.4、(1)见解析;(2)6;(3)见解析【分析】(1)根据轴对称的性质确定出点B关于AE的对称点F即可;(2)即DC与EF的交点为G,由四边形ADGE的面积=平行四边形ADCE的面积-△ECG的面积求解即可;(3)根据轴对称的性质取格点M,连接MC交AE于点P,此时PC+PD的值最小.【详解】解:(1)如图所示,△AEF即为所求作:(2)重叠部分的面积=S四边形ADCE-S△ECG=2×4-×2×2=8-2=6.故答案为:6;(3)如图所示,点P即为所求作:【点睛】本题主要考查的是轴对称变换,重叠部分的面积转化为SADCE-S△GEC是解题的关键.5、(1)见解析;(2)见解析;(3)【分析】(1)根据轴对称的性质分别作出点A,B,C的对应点即可;(2)连接,则与轴的交点即为所求;(3)运用分割法即矩形的面积减去周围三个小三角形的面积即为所求.【详解】(1)如图,即所求(2)如图,点P即所求(3).【点睛】本题考查了轴对称-作图,能够准确作出对称图形是解此题的关键.
相关试卷
这是一份初中数学北师大版七年级下册第五章 生活中的轴对称综合与测试同步测试题,共19页。试卷主要包含了下列图案,是轴对称图形的为,下列图案属于轴对称图形的是等内容,欢迎下载使用。
这是一份初中数学北师大版七年级下册第五章 生活中的轴对称综合与测试课后复习题,共19页。试卷主要包含了下列图形不是轴对称图形的是,如图所示图形中轴对称图形是,下列说法正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第五章 生活中的轴对称综合与测试复习练习题,共19页。试卷主要包含了下列图形是轴对称图形的是,下列图形中是轴对称图形的有个,下列图案中,属于轴对称图形的是,下列图形为轴对称图形的是等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)