![【历年真题】2022年北京市海淀区中考数学第三次模拟试题(含答案及解析)第1页](http://www.enxinlong.com/img-preview/2/3/12675734/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【历年真题】2022年北京市海淀区中考数学第三次模拟试题(含答案及解析)第2页](http://www.enxinlong.com/img-preview/2/3/12675734/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【历年真题】2022年北京市海淀区中考数学第三次模拟试题(含答案及解析)第3页](http://www.enxinlong.com/img-preview/2/3/12675734/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【历年真题】2022年北京市海淀区中考数学第三次模拟试题(含答案及解析)
展开这是一份【历年真题】2022年北京市海淀区中考数学第三次模拟试题(含答案及解析),共18页。试卷主要包含了下列说法正确的是,点P等内容,欢迎下载使用。
2022年北京市海淀区中考数学第三次模拟试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B.那么它爬行的最短路程为( )
A.10米 B.12米 C.15米 D.20米
2、下列命题中,真命题是( )
A.同位角相等
B.有两条边对应相等的等腰三角形全等
C.互余的两个角都是锐角
D.相等的角是对顶角.
3、如图,已知双曲线 经过矩形 边 的中点 且交 于 ,四边形 的面积为 2,则
A.1 B.2 C.4 D.8
4、若x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则4b﹣2a的值为( )
A.﹣2 B.﹣1 C.1 D.2
5、截至2021年12月31日,我国已有11.5亿人完成了新冠疫苗全程接种,数据11.5亿用科学记数法表示为( )
A.11.5×108 B.1.15×108 C.11.5×109 D.1.15×109
6、下列说法正确的是( )
A.不相交的两条直线叫做平行线
B.过一点有且仅有一条直线与已知直线垂直
C.平角是一条直线
D.过同一平面内三点中任意两点,只能画出3条直线
7、《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x元,则可列方程为( )
A. B. C. D.
8、点P(4,﹣3)关于原点对称的点的坐标是( )
A.(3,﹣4) B.(﹣4,3) C.(﹣4,﹣3) D.(4,3)
9、如图,DE是的中位线,若,则BC的长为( )
A.8 B.7 C.6 D.7.5
10、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )
A.1个 B.2个 C.3个 D.4个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、己知等腰三角形两条边长分别是4和10,,则此三角形的周长是___________________
2、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生___人.
3、深圳某商场为吸引顾客,设置了一种游戏,其规则如下:在一个不透明的纸箱中装有红球和白球共10个,这些球除颜色外都相同.凡参与游戏的顾客从纸箱中随机摸出一个球,如果摸到红球就可免费得到一个吉祥物,摸到白球没有吉祥物.据统计,参与这种游戏的顾客共有5000人,商场共发放了吉祥物1500个.则该纸箱中红球的数量约有 _____个.
4、已知(2x﹣4)2+|x+2y﹣8|=0,则(x﹣y)2021=___.
5、已知线段,延长AB至点C,使,反向延长AC至点D,使,则CD的长为__________.
三、解答题(5小题,每小题10分,共计50分)
1、已知:如图,E为△ABC的外角平分线上的一点,AE∥BC,,求证:
(1)△ABC是等腰三角形;
(2).
2、先化简,再求值:a2b-[3ab2-2(-3a2b+ab2)],其中a=1,b=-.
3、分解因式:
(1);
(2).
4、如图,中,,于D,点E在AD上,且.
(1)求证:≌;
(2)判断直线BE和AC的位置关系,并说明理由.
5、深圳某地铁站入口有A,B,C三个安全检查口,假定每位乘客通过任意一个安全检查口的可能性相同.张红与李萍两位同学需要通过该地铁入口乘坐地铁.
(1)张红选择A安全检查口通过的概率是 ;
(2)请用列表或画树状图的方法求出她俩选择相同安全检查口通过的概率.
-参考答案-
一、单选题
1、C
【分析】
将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可.
【详解】
解:如图,
(1)AB==;
(2)AB==15,
由于15<,
则蚂蚁爬行的最短路程为15米.
故选:C.
【点睛】
本题考查了平面展开--最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算.
2、C
【分析】
根据平行线的性质、全等三角形的判定定理、余角的概念、对顶角的概念判断即可.
【详解】
解:A、两直线平行,同位角相等,故本选项说法是假命题;
B、有两条边对应相等的等腰三角不一定形全等,故本选项说法是假命题;
C、互余的两个角都是锐角,本选项说法是真命题;
D、相等的角不一定是对顶角,例如,两直线平行,同位角相等,此时两个同位角不是对顶角,故本选项说法是假命题;
故选:C.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
3、B
【分析】
利用反比例函数图象上点的坐标,设,则根据F点为AB的中点得到.然后根据反比例函数系数k的几何意义,结合,即可列出,解出k即可.
【详解】
解:设,
∵点F为AB的中点,
∴.
∵,
∴,即,
解得:.
故选B.
【点睛】
本题考查反比例函数的k的几何意义以及反比例函数上的点的坐标特点、矩形的性质,掌握比例系数k的几何意义是在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答本题的关键.
4、D
【分析】
将x=1代入原方程即可求出答案.
【详解】
解:将x=1代入原方程可得:1+a-2b=0,
∴a-2b=-1,
∴原式=-2(a-2b)
=2,
故选:D.
【点睛】
本题考查一元二次方程,解题的关键是正确理解一元二次方程的解的概念,本题属于基础题型.
5、D
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:11.5亿=1150000000=1.5×109.
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
6、B
【分析】
根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断.
【详解】
解:同一平面内,不相交的两条直线叫做平行线,故选项A错误;
过一点有且仅有一条直线与已知直线垂直,故选项B正确;
平角是角的两边在同一直线上的角,故选项C错误;
过同一平面内三点中任意两点,能画出1条或3条直线故选项D错误;
故选:B.
【点睛】
此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键.
7、D
【分析】
设这个物品的价格是x元,根据人数不变列方程即可.
【详解】
解:设这个物品的价格是x元,由题意得
,
故选D.
【点睛】
本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.
8、B
【分析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数,进而得出答案.
【详解】
解:点P(4,-3)关于原点对称的点的坐标是(-4,3),
故选:B.
【点睛】
此题主要考查了关于原点对称点的性质,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.
9、A
【分析】
已知DE是的中位线,,根据中位线定理即可求得BC的长.
【详解】
是的中位线,,
,
故选:A.
【点睛】
此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.
10、C
【分析】
解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.
【详解】
解:解不等式组得:,
∵不等式组有且仅有3个整数解,
∴,
解得:,
解方程得:,
∵方程的解为负整数,
∴,
∴,
∴a的值为:-13、-11、-9、-7、-5、-3,…,
∴符合条件的整数a为:-13,-11,-9,共3个,
故选C.
【点睛】
本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.
二、填空题
1、24
【分析】
分两种情考虑:腰长为4,底边为10;腰长为10,底边为4.根据这两种情况即可求得三角形的周长.
【详解】
当腰长为4,底边为10时,因4+4<10,则不符合构成三角形的条件,此种情况不存在;
当腰长为10,底边为4时,则三角形的周长为:10+10+4=24.
故答案为:24
【点睛】
本题考查了等腰三角形的性质及周长,要注意分类讨论.
2、11或12
【分析】
根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+7≥6(x-1)+1,且6(x-1)+3>5x+7,分别求出即可.
【详解】
解:假设共有学生x人,根据题意得出:
,
解得:10<x≤12.
因为x是正整数,所以符合条件的x的值是11或12,
故答案为:11或12.
【点睛】
此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.
3、3
【分析】
先求出得到吉祥物的频率,再设纸箱中红球的数量为x个,根据题意列出方程,解之即可.
【详解】
解:由题意可得:
参与该游戏可免费得到吉祥物的频率为=,
设纸箱中红球的数量为x个,
则,
解得:x=3,
所以估计纸箱中红球的数量约为3个,
故答案为:3.
【点睛】
本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
4、-1
【分析】
由非负数的意义求出x、y的值,再代入计算即可.
【详解】
解:∵(2x-4)2+|x+2y-8|=0,
∴2x-4=0,x+2y-8=0,
解得,x=2,y=3,
∴(x-y)2021=(2-3)2021=(-1)2021=-1,
故答案为:-1.
【点睛】
本题考查非负数的意义,掌握绝对值、偶次幂的运算性质是解决问题的前提.
5、12
【分析】
先求出BC=2,得到AC=AB+BC=8,根据,求出AD=4,再利用CD=AD+AC求出答案.
【详解】
解:∵,,
∴BC=2,
∴AC=AB+BC=8,
∵,
∴AD=4,
∴CD=AD+AC=4+8=12,
故答案为:12.
【点睛】
此题考查了几何图形中线段的和差计算,正确根据题意画出图形辅助解决问题是解题的关键.
三、解答题
1、
(1)见解析
(2)见解析
【分析】
(1)由AE//BC可得,由AE平分得,从而,故可得结论;
(2)根据SAS证明即可证明AF=CE.
(1)
∵AE//BC
∴
∵AE平分
∴
∴
∴,即△ABC是等腰三角形;
(2)
由(1)可得,
∵
∴
∴.
【点睛】
本题主要考查了等腰三角形的判定,全等三角形的判断与性质,能判断出等角对等边是解答本题的关键.
2、,
【分析】
先去括号,然后根据整式的加减计算法则化简,最后代值计算即可.
【详解】
解:
,
当,时,原式.
【点睛】
本题主要考查了整式的化简求值,去括号,含乘方的有理数混合计算,熟知相关计算法则是解题的关键.
3、
(1)
(2)
【分析】
(1)提取公因式,然后用完全平方公式进行化简即可.
(2)提取公因式,然后用平方差公式进行化简即可.
(1)
解:原式;
(2)
解:原式
.
【点睛】
本题考查了乘法公式进行因式分解.解题的关键在于熟练掌握乘法公式.
4、
(1)见详解;
(2)BE⊥AC;理由见详解.
【分析】
(1)先得到AD=BD,,然后利用HL即可证明≌;
(2)延长BE,交AC于点F,由(1)可知,然后得到,即可得到结论成立.
(1)
解:∵于D,
∴,
∵,
∴,
∴,
∵,
∴≌(HL);
(2)
解:BE⊥AC;
理由如下:
延长BE,交AC于点F,如图:
由(1)可知,≌,
∴,
∵,
∴,
∴BE⊥AC;
【点睛】
本题考查了全等三角形的判定和性质,余角的性质,等腰三角形的判定和性质,解题的关键是掌握所学的知识,正确的找出全等的条件.
5、
(1)
(2)
【分析】
(1)根据概率公式求解即可;
(2)根据题意先画出树状图得出所有等情况数和选择相同安全检查口通过的情况数,然后根据概率公式即可得出答案.
【小题1】
解:(1)∵有A.B、C三个闸口,
∴张红选择A安全检查口通过的概率是,
故答案为:;
【小题2】
根据题意画图如下:
共有9种等情况数,其中她俩选择相同安全检查口通过的有3种,
则她俩选择相同安全检查口通过的概率是.
【点睛】
本题考查列表法与树状图法,解题的关键是明确题意,正确画出树状图.
相关试卷
这是一份【历年真题】2022年北京市海淀区中考数学真题模拟测评 (A)卷(含答案及详解),共24页。试卷主要包含了下列计算错误的是,下列命题中,真命题是,已知点A,如图所示,由A到B有①等内容,欢迎下载使用。
这是一份【历年真题】2022年北京市平谷区中考数学第三次模拟试题(含答案解析),共23页。试卷主要包含了有下列说法,下列计算错误的是,下列命题正确的是等内容,欢迎下载使用。
这是一份【历年真题】2022年北京市海淀区中考数学模拟定向训练 B卷(含答案及解析),共23页。试卷主要包含了下列说法正确的是,如图所示,由A到B有①,下列计算错误的是等内容,欢迎下载使用。