![【历年真题】2022年北京市石景山区中考数学备考真题模拟测评 卷(Ⅰ)(含详解)第1页](http://www.enxinlong.com/img-preview/2/3/12675737/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【历年真题】2022年北京市石景山区中考数学备考真题模拟测评 卷(Ⅰ)(含详解)第2页](http://www.enxinlong.com/img-preview/2/3/12675737/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【历年真题】2022年北京市石景山区中考数学备考真题模拟测评 卷(Ⅰ)(含详解)第3页](http://www.enxinlong.com/img-preview/2/3/12675737/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【历年真题】2022年北京市石景山区中考数学备考真题模拟测评 卷(Ⅰ)(含详解)
展开
这是一份【历年真题】2022年北京市石景山区中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共24页。试卷主要包含了下列计算错误的是,下列判断错误的是,下列方程组中,二元一次方程组有等内容,欢迎下载使用。
2022年北京市石景山区中考数学备考真题模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为直线上的一点,平分,,,则的度数为( )A.20° B.18° C.60° D.80°2、若x=1是关于x的一元二次方程x2+mx﹣3=0的一个根,则m的值是( )A.﹣2 B.﹣1 C.1 D.23、抛物线的顶点坐标是( )A. B. C. D.4、下列计算错误的是( )A. B. C. D.5、已知二次函数y=ax2+bx+c的部分图象如图,则关于x的一元二次方程ax2+bx+c=0的解为( )A.x1=﹣4,x2=2 B.x1=﹣3,x2=﹣1C.x1=﹣4,x2=﹣2 D.x1=﹣2,x2=26、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )m.A. B. C. D.2007、下列判断错误的是( )A.若,则 B.若,则C.若,则 D.若,则8、《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?设这个物品的价格是x元,则可列方程为( )A. B. C. D.9、下列方程组中,二元一次方程组有( )①;②;③;④.A.4个 B.3个 C.2个 D.1个10、下列说法中,不正确的是( )A.是多项式 B.的项是,,1C.多项式的次数是4 D.的一次项系数是-4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若将数轴折叠,使得表示-1的点与表示5的点重合,则原点与表示_______的点重合.2、用幂的形式表示:=________.3、计算:=______.4、如图,在中,,,,蚂蚁甲从点A出发,以1.5cm/s的速度沿着三角形的边按的方向行走,甲出发1s后蚂蚁乙从点A出发,以2cm/s的速度沿着三角形的边按的方向行走,那么甲出发________s后,甲乙第一次相距2cm.5、中午放学后,有a个同学在学校一食堂门口等侯进食堂就餐,由于二食堂面积较大,所以配餐前二食堂等待就餐的学生人数是一食堂的2倍,开始配餐后,仍有学生续前来排队等候就餐,设一食堂排队的学生人数按固定的速度增加,且二食堂学生人数增加的速度是一食堂的2倍,两个食堂每个窗口阿姨配餐的速度是一样的,一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放2个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕;若需要在15分钟内配餐完毕,则两个食堂至少需要同时一共开放___个配餐窗口.三、解答题(5小题,每小题10分,共计50分)1、计算:(1);(2).2、一个正整数k去掉个位数字得到一个新数,如果原数的个位数字的2倍与新数之和与7的商是一个整数,则称正整数k为“尚志数”,把这个商叫做k的尚志系数,记这个商为F(k).如:732去掉个位数字是73.2的2倍与73的和是77,77÷7=11,11是整数,所以732是“尚志数”,732的尚志系数是11,记F(732)=11:(1)计算:F(204)= ;F(2011)= ;(2)若m、n都是“尚志数”,其中m=3030+10la,n=400+10b+c(0≤a≤9,0≤b≤9,0≤c≤9,a,b,c是整数),规定:G(m,n)=,当F(m)+F(n)=66时,求G(m,n)的值.3、如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),二次函数y=x2+bx﹣2的图象经过C点.(1)求二次函数的解析式;(2)若点P是抛物线的一个动点且在x轴的下方,则当点P运动至何处时,恰好使△PBC的面积等于△ABC的面积的两倍.(3)若点Q是抛物线上的一个动点,则当点Q运动至何处时,恰好使∠QAC=45°?请你求出此时的Q点坐标.4、敕勒川,阴山下,天似穹庐,笼盖四野.天苍苍,野茫茫,风吹草地见牛羊,河套地区地势平坦、土地肥沃,适合大规模农牧.现有一片草场,草匀速生长,如果放牧360只羊,4周可以将草全部吃完.如果放牧210只羊,9周才能将草全部吃完.(假设每只羊每周吃的草量相等)(1)求这片草场每周生长的草量和牧民进驻前原有草量的比;(2)如果牧民准备在这片草场放牧8周,那么最多可以放牧多少只羊?5、如图,直线AB与CD相交于点O,OE 是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是 ;(2)若∠COF=2∠COE,求△BOE 的度数;(3)试判断 OF是否平分∠AOC,请说明理由. -参考答案-一、单选题1、A【分析】根据角平分线的定义得到,从而得到,再根据可得,即可求出结果.【详解】解:∵OC平分,∴,∴,∵,∴,∴,故选:A.【点睛】本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键.2、D【分析】把x=1代入方程x2+mx-3=0,得出一个关于m的方程,解方程即可.【详解】解:把x=1代入方程x2+mx-3=0得:1+m-3=0,解得:m=2.故选:D.【点睛】本题考查了一元二次方程的解和解一元一次方程,关键是能根据题意得出一个关于m的方程.3、A【分析】根据二次函数y=a(x-h)2+k的性质解答即可.【详解】解:抛物线的顶点坐标是,故选A.【点睛】本题考查了二次函数y=a(x-h)2+k(a,h,k为常数,a≠0)的性质,熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键. y=a(x-h)2+k是抛物线的顶点式,a决定抛物线的形状和开口方向,其顶点是(h,k),对称轴是x=h.4、A【分析】直接利用二次根式的性质以及二次根式的乘法运算法则化简,进而判断即可.【详解】解:A.,故此选项计算错误,符合题意;B.,故此选项计算正确,不合题意;C.,故此选项计算正确,不合题意;D.,故此选项计算正确,不合题意;故选:A.【点睛】此题考查了二次根式的性质及二次根式的乘法运算法则,熟记乘法法则是解题的关键.5、A【分析】关于x的一元二次方程ax2+bx+c=0(a≠0)的根即为二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点的横坐标.【详解】解:根据图象知,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点是(2,0),对称轴是直线x=−1.设该抛物线与x轴的另一个交点是(x,0).则,解得,x=-4 ,即该抛物线与x轴的另一个交点是(-4,0).所以关于x的一元二次方程ax2+bx+c=0(a≠0)的根为x1=−4,x2=2.故选:A.【点睛】本题考查了抛物线与x轴的交点.解题时,注意抛物线y=ax2+bx+c(a≠0)与关于x的一元二次方程ax2+bx+c=0(a≠0)间的转换.6、B【分析】连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可.【详解】解:连接BD,如下图所示:与所对的弧都是.. 所对的弦为直径AD,. 又,为等腰直角三角形,在中,,由勾股定理可得:. 故选:B.【点睛】本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.7、D【分析】根据等式的性质解答.【详解】解:A. 若,则,故该项不符合题意; B. 若,则,故该项不符合题意;C. 若,则,故该项不符合题意; D. 若,则(),故该项符合题意;故选:D.【点睛】此题考查了等式的性质:等式两边同时加上或减去同一个整式,等式仍然成立;等式两边同时乘或除以同一个不为0的整式,等式仍然成立.8、D【分析】设这个物品的价格是x元,根据人数不变列方程即可.【详解】解:设这个物品的价格是x元,由题意得,故选D.【点睛】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.9、C【分析】组成二元一次方程组的两个方程应共含有两个相同的未知数,且未知数的项最高次数都应是一次的整式方程.【详解】解:①、符合二元一次方程组的定义,故①符合题意;②、第一个方程与第二个方程所含未知数共有3个,故②不符合题意;③、符合二元一次方程组的定义,故③符合题意;④、该方程组中第一个方程是二次方程,故④不符合题意.故选:.【点睛】本题考查了二元一次方程组的定义,解题时需要掌握二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.10、C【分析】根据多项式的定义及项数、次数定义依次判断.【详解】解:A. 是多项式,故该项不符合题意; B. 的项是,,1,故该项不符合题意; C. 多项式的次数是5,故该项符合题意; D. 的一次项系数是-4,故该项不符合题意; 故选:C.【点睛】此题考查了多项式的定义及项数的定义、次数的定义,正确掌握多项式的各定义是解题的关键.二、填空题1、4【分析】设原点与表示x的点重合,先根据题意求出数轴上折叠的那个地方表示的数为,则,由此即可得到答案.【详解】解:设原点与表示x的点重合,∵将数轴折叠,使得表示-1的点与表示5的点重合,∴数轴上折叠的那个地方表示的数为,∴,解得,故答案为:4.【点睛】本题主要考查了数轴上两点中点的计算方法,解一元一次方程,解题的关键在于能够根据题意求出折叠点表示的数.2、【分析】根据分数指数幂的意义,利用(m、n为正整数)得出即可.【详解】解:.故答案是:.【点睛】本题考查了分数指数幂,解决本题的关键是熟记分数指数幂的定义.3、2【分析】根据二次根式乘除法运算法则进行计算即可得到答案.【详解】解:原式,故答案为:.【点睛】此题主要考查了二次根式的乘除运算,掌握运算法则是解答此题的关键.4、4【分析】根据题意,找出题目的等量关系,列出方程,解方程即可得到答案.【详解】解:根据题意,∵,,,∴周长为:(cm),∵甲乙第一次相距2cm,则甲乙没有相遇,设甲行走的时间为t,则乙行走的时间为,∴,解得:;∴甲出发4秒后,甲乙第一次相距2cm.故答案为:4.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确的列出方程.5、29【分析】设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,根据“一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放20个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕”,即可得出关于x,y,a的三元一次方程组,解之即可用含y的代数式表示出a,x,设设两个食堂同时一共开放m个配餐窗口,根据需要在15分钟内配餐完毕,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,依题意得:,∴,设两个食堂同时一共开放m个配餐窗口,依题意得:15my≥a+2a+15×(x+2x),解得:m≥29.故答案为:29.【点睛】本题考查了三元一次方程组的应用以及一元一次不等式的应用,找准等量关系,正确列出三元一次方程组是解题的关键.三、解答题1、(1)(2)【分析】(1)先计算单项式乘单项式,积的乘方,再合并同类项即可;(2)利用平方差公式与完全平方公式计算,在合并同类项即可.(1)解:,,;(2)解:,,.【点睛】本题考查单项式乘单项式,积的乘方混合运算,乘法公式的混合计算,掌握单项式乘单项式,积的乘方混合运算,熟记乘法公式是解题关键.2、(1)4;29(2)或0或【分析】(1)利用“尚志数”的定义即可求得结论;(2)利用m=3030+101a是“尚志数”,根据0≤a≤9,a为整数可求得a=1或8,进而求得F(m)的值,利用F(m)+F(n)=66,可得F(n),再利用“尚志数”的定义得出关于b,c的式子,利用0≤b≤9,0≤c≤9,b,c是整数可求得b,c的值,利用公式G(m,n)=,可求结论.【小题1】解:∵20+4×2=28,28÷7=4,∴F(204)=4.∵201+1×2=203,203÷7=29,∴F(2011)=29.故答案为:4;29;【小题2】∵m=3030+101a=3000+100a+30+a,∴F(m)=,由题干中的定义可知为整数,且0≤a≤9,∵a=1时,=2,a=8时,=14,∴a=1或a=8.①当a=1时,F(m)=43+2=45,∵F(m)+F(n)=66,∴F(n)=21.∵F(n)=,∴=21.∴b+2c=107.∵0≤b≤9,0≤c≤9,∴不存在b,c满足b+2c=107.②当a=8时,F(m)=43+14=57,∵F(m)+F(n)=66,∴F(n)=9.∵F(n)=,∴=9.∴b+2c=23.∵0≤b≤9,0≤c≤9,∴或或,∴当a=8,b=5,c=9时,G(m,n)=;当a=8,b=7,c=8时,G(m,n)=;当a=8,b=9,c=7时,G(m,n)=.【点睛】本题主要考查了因式分解的应用,本题是阅读型题目,准确理解题干中的定义并熟练应用是解题的关键.3、(1);(2)当点P运动至坐标为或时,恰好使△PBC的面积等于△ABC的面积的两倍; (3)或【分析】(1)如图,过作于 先证明 可得 再代入二次函数y=x2+bx﹣2中,再利用待定系数法求解即可;(2)先求解 过作轴交于 再求解直线为: 设 则 再利用 再解方程即可;(3)分两种情况讨论:如图,作关于的对称点 连接 作的角平分线 交于 交抛物线于 由 则再求解的解析式,再求解与抛物线的交点坐标即可,如图,同理可得:当平分时,射线与抛物线的交点满足 按同样的方法可得答案.【详解】解:(1)如图,过作于 则 而 而 二次函数y=x2+bx﹣2的图象经过C点,解得: 二次函数的解析式为: (2) 过作轴交于 设直线为 解得: 所以直线为: 设 则 整理得:解得: 当时, 当时, 或 所以当点P运动至坐标为或时,恰好使△PBC的面积等于△ABC的面积的两倍.(3)如图,作关于的对称点 连接 作的角平分线 交于 交抛物线于 由 则 平分 则 同理可得直线的解析式为: 解得:或(不合题意,舍去)如图,同理可得:当平分时,射线与抛物线的交点满足 同理: 直线为: 解得:或(不合题意舍去)【点睛】本题考查的是利用待定系数法求解一次函数,二次函数关系式,全等三角形的性质与判定,等腰直角三角形的性质,一元二次方程的解法,清晰的分类讨论是解本题的关键.4、(1)这片草场每周生长的草量和牧民进驻前原有草量的比为(2)最多可以放牧225只羊【分析】(1)设每只羊每周吃的草量为1份,这片草场牧民进驻前原有草量份,这片草场每周生长的草量为份,根据等量关系列出方程组即可;(2)设可以放牧只羊,列出一元一次不等式,即可求解.(1)解:设每只羊每周吃的草量为1份,这片草场牧民进驻前原有草量份,这片草场每周生长的草量为份,依题意得:,解得:,.答:这片草场每周生长的草量和牧民进驻前原有草量的比为.(2)设可以放牧只羊,依题意得:,解得:.答:最多可以放牧225只羊.【点睛】本题主要考查二元一次方程组以及一元一次不等式的实际应用,找出数量关系,列出方程组和不等式是解题的关键.5、(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=×90°=60°,∠COE=×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.
相关试卷
这是一份【历年真题】2022年河北秦皇岛市中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共21页。试卷主要包含了下列说法正确的是,分式方程有增根,则m为等内容,欢迎下载使用。
这是一份【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共24页。试卷主要包含了若,则的值是,如图,在中,,,则的值为,下列式中,与是同类二次根式的是,下列命题中,真命题是等内容,欢迎下载使用。
这是一份【真题汇编】2022年北京市石景山区中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解),共20页。试卷主要包含了如图所示,由A到B有①,下列命题正确的是,下列方程是一元二次方程的是等内容,欢迎下载使用。
![英语朗读宝](http://www.enxinlong.com/img/images/ed4b79351ae3a39596034d4bbb94b742.jpg)