初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试测试题
展开
这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试测试题,共17页。试卷主要包含了下列说法正确的个数是,对于不等式4x+7,不等式的最大整数解为,若a<b,则下列式子正确的是等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列不等式组,无解的是( )A. B. C. D.2、如图,下列结论正确的是( )A.c>a>b B. C.|a|<|b| D.abc>03、不等式的解集在数轴上表示正确的是 ( )A. B.C. D.4、下列说法正确的个数是( )(1)一个数绝对值越大,表示它的点在数轴上离原点越远;(2)当时,总是大于0;(3)若mn=0,则m、n中必有一个数为0;(4)如果那么一定有最小值-5.A.1个 B.2个 C.3个 D.4个5、若x+2022>y+2022,则( )A.x+2<y+2 B.x-2<y-2 C.-2x<-2y D.2x<2y6、对于不等式4x+7(x-2)>8不是它的解的是( )A.5 B.4 C.3 D.27、不等式的最大整数解为( )A.2 B.3 C.4 D.58、若a<b,则下列式子正确的是( )A.> B.﹣3a<﹣3b C.3a>3b D.a﹣3<b﹣39、关于的不等式组有解且不超过3个整数解,若,那么的取值范围是( )A. B. C. D.10、把不等式组的解集在数轴上表示,正确的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用不等式表示:x的4倍与y的和不小于300_____________.2、把一堆花生分给一群猴子,如果每只猴子分3颗,就剩8颗;如果每只猴子分5颗,那么最后一只猴子分到的花生不足5颗.求猴子的只数与花生的颗数分别为________.3、解不等式:x﹣3<2x的解集是 ___.4、如果代数式x+7的值不小于零,那么x的取值范围是____.5、若x<y,且(6﹣a)x>(6﹣a)y,则a的取值范围是 ______.三、解答题(5小题,每小题10分,共计50分)1、下列式子中,是一元一次不等式的有哪些?(1)3x+5=0;(2)2x+3>5;(3);(4)≥2;(5)2x+y≤82、求一元一次不等式组的解集,并把它的解集表示在数轴上.3、某商店对A型号笔记本电脑举行促销活动,有两种优惠方案可供选择.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.已知A型号笔记本电脑的原售价是5000元/台,某公司一次性从该商店购买A型号笔记本电脑x台.(1)若方案二比方案一更便宜,根据题意列出关于x的不等式.(2)若公司买12台笔记本,你会选择哪个方案?请说明理由.4、公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元的月租费,每通话1分钟付费0.10元,两种方式不足1分钟均按1分钟计算.(1)如果一个月通话100分钟,甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)请你为用户设计一个方案,使用户能合理地选择付费方式.5、某童装店按每套90元的价格购进40套童装,然后按标价打九折售出,如果要获得不低于900元的利润,每套童装的标价至少是_____元. ---------参考答案-----------一、单选题1、D【解析】【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A、,解得,解集为:,故不符合题意;B、,解得,解集为:,故不符合题意;C、,解得,解集为:,故不符合题意;D、,解得,无解,符合题意;故选:D.【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.2、B【解析】【分析】根据数轴可得:再依次对选项进行判断.【详解】解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大,即可得:,A、由,得,故选项错误,不符合题意;B、,根据不等式的性质可得:,故选项正确,符合题意;C、,可得,故选项错误,不符合题意;D、,故,故选项错误,不符合题意;故选:B.【点睛】本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出.3、B【解析】【分析】先解不等式,得到不等式的解集,再在数轴上表示不等式的解集即可.【详解】解:,移项得: 解得: 所以原不等式得解集:.把解集在数轴上表示如下:故选B【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“画图时,小于向左拐,大于向右拐”是解本题的关键,注意实心点与空心圈的使用.4、D【解析】【分析】根据所学知识逐一判断即可.【详解】∵一个数绝对值越大,表示它的点在数轴上离原点越远,∴(1)正确;∵≥0,∴当时,总是大于0,∴(2)正确;∵mn=0,∴m=0或n=0,∴(3)正确;∵,∴一定有最小值-5∴(4)正确;故选D.【点睛】本题考查了数轴与点的关系,绝对值,有理数的积为零,不等式的性质,熟练掌握绝对值的意义和不等式的性质是解题的关键.5、C【解析】【分析】直接根据不等式的性质可直接进行排除选项【详解】解:∵x+2022>y+2022,∴x>y,∴x+2>y+2,x-2>y-2,-2x<-2y,2x>2y.故答案为:C.【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.6、D【解析】【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.【详解】解:当x=5时,4x+7(x-2)=41>8, 当x=4时,4x+7(x-2)=30>8,当x=3时,4x+7(x-2)=19>8,当x=2时,4x+7(x-2)=8.故知x=2不是原不等式的解.故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键.7、B【解析】【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】解:,,,则符合条件的最大整数为:,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.8、D【解析】【分析】根据不等式的基本性质判断即可.【详解】解:A选项,∵a<b,∴,故该选项不符合题意;B选项,∵a<b,∴﹣3a>﹣3b,故该选项不符合题意;C选项,∵a<b,∴3a<3b,故该选项不符合题意;D选项,∵a<b,∴a﹣3<b﹣3,故该选项符合题意;故选:D【点睛】本题考查了不等式的基本性质,掌握①不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;②不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键.9、C【解析】【分析】先解不等式组,在根据不超过3个整数解,确定的取值范围,即可得出结论.【详解】解:,解不等式得,解不等式得,,因为不等式组有解,故解集为:,因为不等式组有不超过3个整数解,所以,,把代入,,解得,故选:C.【点睛】本题考查了一元一次不等式组的整数解问题,解题关键是熟练解不等式组,根据有解和整数解的个数列出不等式组.10、D【解析】【分析】先求出不等式组的解集,再把不等式组的解集在数轴上表示出来,即可求解.【详解】解:,解不等式②,得: ,所以不等式组的解集为 把不等式组的解集在数轴上表示出来为:故选:D【点睛】本题主要考查了解一元一次不等组,熟练掌握解一元一次不等组的步骤是解题的关键.二、填空题1、【解析】【分析】首先表示“x的4倍与y的和”为4x+y,再表示“不小于300”可得结论.【详解】解:x的4倍为4x,则x的4倍与y的和为4x+y,再表示“不小于300”可得:,故答案为:.【点睛】此题主要考查了列一元一次不等式,关键是要抓住题目中的关键词,如“大于(小于)、不超过(不低于)、是正数(负数)”“至少”、“最多”等等,正确选择不等号.2、5只和23颗或6只和26颗.【解析】【分析】设猴子的只数为x只,根据题意列出不等式组,求整数解即可.【详解】解:设猴子的只数为x只,根据题意列出不等式组得,,解得,,因为x为整数是,所以,或,花生的颗数为颗或颗故答案为:5只和23颗或6只和26颗.【点睛】本题考查了一元一次不等式组的应用,解题关键是准确把握题目中的不等量关系,列出不等式组.3、.【解析】【分析】先移项,然后系数化为1,即可求出不等式的解集.【详解】解:,∴,∴,∴,∴,∴.故答案为:.【点睛】本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键.4、.【解析】【分析】根据题意列不等式求解.【详解】根据题意,得:x+7≥0,移项,得:x≥﹣7,系数化为1,得:,故答案为:.【点睛】此题考查不等式的实际应用,正确理解题中的数量关系列出不等式解答是解题的关键.5、a>6【解析】【分析】根据不等式的基本性质,发现不等式的两边都乘(6﹣a)后,不等号的方向改变了,说明(6﹣a)是负数,从而得出答案.【详解】解:根据题意得:6﹣a<0,∴a>6,故答案为:a>6.【点睛】本题考查了不等式的基本性质,掌握①不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;②不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键.三、解答题1、(2)、(3)是一元一次不等式【解析】【分析】一元一次不等式的定义主要由三部分组成:①不等式的左右两边分母不含未知数;②不等式中只含一个未知数;③未知数的最高次数是1,三个条件缺一不可,根据定义逐一判断即可.【详解】解:(1)是等式;(4)不等式的左边不是整式;(5)含有两个未知数,所以不是一元一次不等式,所以一元一次不等式有:(2)、(3)【点睛】本题考查的是一元一次不等式的识别,掌握一元一次不等式的定义是解本题的关键.2、x≤1,解集在数轴上的表示见解析【解析】【分析】先求出两个一元一次不等式的解集,再求两个解集的公共部分即得不等式组的解集,然后把解集在数轴上表示出来即可.【详解】解不等式①得:x≤1,解不等式②得:x<4, ∴不等式组的解集为x≤1. 不等式组的解集在数轴表示如下: 【点睛】本题考查了解一元一次不等式组,关键是求出每一个一元一次不等式的解集,注意当不等式两边同除以一个负数时,务必记住:不等号的方向要改变.3、(1)5000×5+5000×80%(x﹣5)<5000×90%x;(2)方案二,理由见解析【解析】【分析】(1)根据方案二比方案一更便宜,结合题意列出关于x的不等式即可;(2)根据公司买12台笔记本,分别计算出方案一和方案二所需钱数比较即可.【详解】解:(1)根据题意可知,按照方案一购买需要 ()元;按照方案二购买需要元.故可列不等式为:.(2)选择方案二,理由:方案一购买12台需要:(元),方案二购买12台需要:(元),∵54000>53000,∴选择方案二.【点睛】本题考查了由实际问题抽象出一元一次不等式,解题的关键是:(1)找准不等量关系,正确列出一元一次不等式;(2)根据优惠方案,列式计算.4、(1)甲种方式付话费15元,乙种方式付话费28元;(2)当通话时间低于360分钟时,选甲种付费方式合算;当通话时间为360分钟时,选择两种付费方式一样合算;当通话时间超过360分钟时,选择乙种付费方式合算【解析】【分析】(1)直接用0.15乘以100和用18加0.10乘以100,即可求解;(2)设一个月通话x分钟,则甲种方式应付话费 元,乙种方式应付话费 元,然后根据题意可得当18+0.10x=0.15x时,两种付费方式相同;当18+0.10x>0.15x时,甲种付费方式合算;当18+0.10x<0.15x时,乙种付费方式合算, 即可求解.【详解】解:(1)甲:0.15×100=15(元);乙:18+0.10×100=28(元);答:甲种方式付话费15元,乙种方式付话费28元.(2)设一个月通话x分钟,则甲种方式应付话费 元,乙种方式应付话费 元,当18+0.10x=0.15x时,两种付费方式相同,此时解得:x=360,当18+0.10x>0.15x时,甲种付费方式合算,此时解得:x<360,当18+0.10x<0.15x时,乙种付费方式合算,此时解得:x>360,∴当通话时间低于360分钟时,选甲种付费方式合算;当通话时间为360分钟时,选择两种付费方式一样合算;当通话时间超过360分钟时,选择乙种付费方式合算.【点睛】本题主要考查了列代数式以及一元一次方程和一元一次不等式的实际应用,明确题意,准确得到数量关系是解题的关键 .5、125【解析】【分析】设每套童装的标价是x元,根据(售价﹣进价)×销量=总利润列出不等式,解不等式可得出x的取值范围,即可得答案.【详解】设每套童装的标价是x元,∵按标价打九折售出,要获得不低于900元的利润,∴40×(x•90%﹣90)≥900,解得:x≥125,∴每套童装的标价至少125元.故答案为:125【点睛】本题考查一元一次不等式的应用,理解题意,根据(售价﹣进价)×销量=总利润列出不等式是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共21页。试卷主要包含了下列命题是真命题的是,已知,则的余角的补角是等内容,欢迎下载使用。
这是一份2021学年第七章 观察、猜想与证明综合与测试课后复习题,共24页。试卷主要包含了命题,如图,不能推出a∥b的条件是等内容,欢迎下载使用。
这是一份初中数学第八章 因式分解综合与测试巩固练习,共16页。试卷主要包含了将分解因式,正确的是,多项式分解因式的结果是,已知,,那么的值为等内容,欢迎下载使用。