北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试复习练习题
展开这是一份北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试复习练习题,共20页。试卷主要包含了关于x的方程3﹣2x=3等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、有两个正数a,b,且a<b,把大于等于a且小于等于b的所有数记作[a,b].例如,大于等于1且小于等于4的所有数记作[1,4].若整数m在[5,15]内,整数n在[﹣30,﹣20]内,那么的一切值中属于整数的个数为( )
A.6个 B.5个 C.4个 D.3个
2、某种商品进价为700元,标价1100元,由于该商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可以打( )折.A.9 B.8 C.7 D.6
3、若,则x一定是( )
A.零 B.负数 C.非负数 D.负数或零
4、若实数a,b满足a>b,则下列不等式一定成立的是( )
A.a>b+2 B.a﹣1>b﹣2 C.﹣a>﹣b D.a2>b2
5、在数轴上点A,B对应的数分别是a,b,点A在表示﹣3和﹣2的两点之间(包括这两点)移动,点B在表示﹣1和0的两点(包括这两点)之间移动,则以下四个代数式的值可能比2021大的是( )
A. B. C. D.
6、不符式的解集在数轴上表示正确的是( )
A. B.
C. D.
7、关于x的方程3﹣2x=3(k﹣2)的解为非负整数,且关于x的不等式组无解,则符合条件的整数k的值的和为( )
A.5 B.2 C.4 D.6
8、若a+b+c=0,且|a|>|b|>|c|,则下列结论一定正确的是( )
A.abc>0 B.abc<0 C.ac>ab D.ac<ab
9、如果 , 那么下列不等式中不成立的是( )
A. B.
C. D.
10、把不等式组的解集在数轴上表示,正确的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、不等式组的解集为_______.
2、有人问一位教师所教班级有多少人,教师说:“一半学生在学数学,四分之一学生在学音乐,七分之一学生在读外语,还剩下不足六位学生在操场踢足球”,则这个班有_______名学生.
3、用“>”或“<”填空,并说明是根据不等式的哪条基本性质:
(1)如果x+2>5,那么x_______3;根据是_______.
(2)如果,那么a_______;根据是________.
(3)如果,那么x________;根据是________.
(4)如果x-3<-1,那么x_______2;根据是________.
4、不等式组的整数解是__________.
5、若不等式组无解,则的取值范围为__.
三、解答题(5小题,每小题10分,共计50分)
1、(1)解不等式:3x﹣2≤5x,并把解集在数轴上表示出来.
(2)解不等式组,并写出它的最大整数解.
2、根据要求解不等式或答题
(1);
(2)若关于的不等式组有四个整数解,则的取值范围是?
(3);
(4).
3、(1)解不等式:3x﹣2≤5x,并把解集在数轴上表示出来.
(2)解不等式组,并写出它的最大整数解.
4、小李家有一个果园,种植了一些枇杷,每年到了枇杷收获的季节,小李家都开启了线上、线下两种销售模式.
(1)已知小李家前年共出产4500千克枇杷,全部售出,其中线上销售量不超过线下销售量的4倍,求小李家前年线下销售枇杷至少多少千克?
(2)据统计,小李家去年销售枇杷线下单价为15元/千克,销售量为1000千克;线上单价为10元/千克,销售量为2000千克.由于今年枇杷产量降低,小李家销售枇杷时线下单价上涨了a%,线上销售单价上涨了.结果线下销量比去年减少了200千克,线上销量比去年减少了400千克,销售总额比去年减少了1000元.求a的值.
5、解不等式组:.
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
根据已知条件得出5≤m≤15,−30≤n≤−20,再得出的范围,即可得出整数的个数.
【详解】
解:∵m在[5,15]内,n在[−30,−20]内,
∴5≤m≤15,−30≤n≤−20,
∴−≤≤,即−6≤≤−,
∴的一切值中属于整数的有−2,−3,−4,−5,−6,共5个;
故选:B.
【点睛】
此题考查了不等式组的应用,求出5≤m≤15和−30≤n≤−20是解题的关键.
2、C
【解析】
【分析】
设打x折,由题意:某种商品进价为700元,标价1100元,商店准备打折销售,但要保证利润率不低于10%,列出一元一次不等式,解不等式即可.
【详解】
设打x折,
根据题意得:1100×﹣700≥700×10%,
解得:x≥7,
∴至多可以打7折
故选:C.
【点睛】
本题考查了一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解.
3、D
【解析】
【分析】
根据绝对值的性质可得,求解即可.
【详解】
解:∵
∴,解得
故选D
【点睛】
此题考查了绝对值和不等式的性质,解题的关键是熟练掌握绝对值和不等式的有关性质.
4、B
【解析】
【分析】
根据不等式的性质即可依次判断.
【详解】
解:当a>b时,a>b+2不一定成立,故错误;
当a>b时,a﹣1>b﹣1>b﹣2,成立,
当a>b时,﹣a<﹣b,故错误;
当a>b时,a2>b2不一定成立,故错误;
故选:B.
【点睛】
本题主要考查了不等式的性质的灵活应用,解题的关键是基本知识的熟练掌握.
5、C
【解析】
【分析】
根据已知条件得出,,,求出,,,,再分别求出每个式子的范围,根据式子的范围即可得出答案.
【详解】
,,
,,,,,
,故A选项不符合题意;
,故B选项不符合题意;
可能比2021大,故C选项符合题意;
,故D选项不符合题意;
故选:C.
【点睛】
本题考查数轴、倒数、有理数的混合运算,求出每个式子的范围是解题的关键.
6、D
【解析】
【分析】
先求出不等式的解集,再根据解集在数轴上的表示方法表示即可.
【详解】
解:,
解得:,
在数轴上表示解集为:
,
故选:D.
【点睛】
题目主要考查了求不等式的解集,在数轴上表示不等式的解集,掌握数轴上表示不等式解集的方法是解题的关键.
7、C
【解析】
【分析】
先求出3﹣2x=3(k﹣2)的解为x,从而推出,整理不等式组可得整理得:,根据不等式组无解得到k>﹣1,则﹣1<k≤3,再由整数k和是整数进行求解即可.
【详解】
解:解方程3﹣2x=3(k﹣2)得x,
∵方程的解为非负整数,
∴0,
∴,
把整理得:,
由不等式组无解,得到k>﹣1,
∴﹣1<k≤3,即整数k=0,1,2,3,
∵是整数,
∴k=1,3,
综上,k=1,3,
则符合条件的整数k的值的和为4.
故选C.
【点睛】
本题主要考查了解一元一次方程,根据一元一次不等式组的解集情况求参数,解题的关键在于能够熟练掌握相关知识进行求解.
8、C
【解析】
【分析】
由的绝对值最小,分析不符合题意,再由 分析可得中至少有一个负数,至多两个负数,再分情况讨论即可得到答案.
【详解】
解: a+b+c=0,且|a|>|b|>|c|,
当时,则 则 不符合题意;
从而:中至少有一个负数,至多两个负数,
当 且|a|>|b|>|c|,
此时B,C成立,A,D不成立,
当 且|a|>|b|>|c|,
此时A,C成立,B,D不成立,
综上:结论一定正确的是C,
故选C
【点睛】
本题考查的是绝对值的含义,有理数的和的符号的确定,有理数积的符号的确定,利用数轴表示有理数,扎实的基础知识是解题的关键.
9、D
【解析】
【分析】
根据不等式的性质逐个判断即可.不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变.
【详解】
解:A、∵,
∴,选项正确,不符合题意;
B、∵,
∴,选项正确,不符合题意;
C、∵,
∴,选项正确,不符合题意;
D、∵,
∴,选项错误,符合题意.
故选:D.
【点睛】
此题考查了不等式的性质,解题的关键是熟练掌握不等式的性质.不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变.
10、D
【解析】
【分析】
先求出不等式组的解集,再把不等式组的解集在数轴上表示出来,即可求解.
【详解】
解:,
解不等式②,得: ,
所以不等式组的解集为
把不等式组的解集在数轴上表示出来为:
故选:D
【点睛】
本题主要考查了解一元一次不等组,熟练掌握解一元一次不等组的步骤是解题的关键.
二、填空题
1、
【解析】
【分析】
先分别求出每一个不等式的解集,然后再根据“同大取大、同小取小、大小小大中间找、大大小小找不到”确定不等式组的解集即可.
【详解】
解:由,得:,
由,得:,
∴不等式组的解集为.
故填:.
【点睛】
本题主要考查了解一元一次不等式组,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答本题的关键.
2、28
【解析】
【分析】
根据题意可以列出相应的不等式,又根据一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在读外语,可知该班学生一定是2、4、7的倍数,从而可以解答本题.
【详解】
解:设这个班有x人,
由题意可得:,
解得,x<56,
又∵一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在读外语,
∴该班学生一定是2、4、7的倍数,
∴x=28,
故答案为:28.
【点睛】
本题考查一元一次不等式的应用,解答此类问题的关键是列出相应的不等式,注意要联系实际情况和题目中的要求.
3、 > 不等式基本性质1 > 不等式基本性质3 < 不等式基本性质2 < 不等式基本性质1;
【解析】
【分析】
(1)根据不等式基本性质1,不等式两边同时加上或减去一个数,不等号方向不变,求解即可;
(2)根据不等式基本性质3,不等式两边同时乘以或除以一个负数,不等号方向改变,据此求解即可;
(3)根据不等式基本性质2,不等式两边同时乘以或除以一个正数,不等号方向不变,求解即可;
(4)根据不等式基本性质1,不等式两边同时加上或减去一个数,不等号方向不变,求解即可.
【详解】
解:(1)如果x+2>5,那么,不等号两边同时减去2,不等号方向不变,根据的是不等式基本性质1;
(2)如果,不等号两边同时乘以,那么;根据是不等式基本性质3;
(3)如果,不等号两边同时乘以,那么;根据是不等式基本性质2;
(4)如果x-3<-1,不等号两边同时加上3,那么;根据是不等式基本性质1;
故答案为:,不等式基本性质1;,不等式基本性质3;,不等式基本性质2;,不等式基本性质1.
【点睛】
此题考查了不等式的基本性质,解题的关键是掌握不等式的基本性质.
4、-1、0
【解析】
【分析】
分别求出各不等式的解集,再求出其公共解集即可得出答案.
【详解】
解:解不等式,
得:,
解不等式,
得:,
则不等式组的解集为,
∴不等式组的整数解为-1、0,
故答案为:-1、0.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解题的关键.
5、
【解析】
【分析】
先求出不等式的解集为,再由不等式组无解,得到,由此即可得到答案.
【详解】
解:
解不等式,得:,
∵不等式组无解,
∴,
解得,
故答案为:.
【点睛】
本题主要考查了根据不等式组的解集情况求参数,解题的关键在于能够熟练掌握不等式组的解集的情况:大小小大中间找,大大小小找不到.
三、解答题
1、(1)x≥﹣1,数轴见解析;(2),2
【解析】
【分析】
(1)根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1可得;
(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,进而即可求解.
【详解】
解:(1)移项,得:3x﹣5x≤2,
合并同类项,得:﹣2x≤2,
系数化为1,得:x≥﹣1,
将不等式的解集表示在数轴上如下:
(2)解不等式2(x﹣2)≤3﹣x,得:x≤,
解不等式,得:x>﹣3,
则不等式组的解集为﹣3<x≤,
∴其最大整数解为2.
【点睛】
本题主要考查解一元一次不等式以及不等式组,熟练掌握解不等式(组)的基本步骤是解题的关键.
2、(1)-1≤x<;(2)≤a<;(3)当m>2时,x>;当m<2时,x<;(4)1<x<4.
【解析】
【分析】
(1)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集;
(2)先解每一个不等式,根据范围内有四个整数解,确定a的取值范围;
(3)利用不等式的解法分别从m>2和m<2分别求解即可;
(4)根据绝对值的性质分别从x<-1,-1≤x≤0,0<x≤2与x>2四种情况分别化简不等式,再利用不等式的解法分别求解,即可得出原不等式的解集.
【详解】
解:(1)
解不等式①得x≥-1,
解不等式②得x<,
∴不等式组的解集为-1≤x<.
(2)
由不等式①,得2x-3x<-9+1,解得x>8,
由不等式②,得3x+2>4x+4a,解得x<2-4a,
∵不等式组有四个整数解,即:9,10,11,12,
∴12<2-4a≤13,
解得≤a<;
(3),
移项,得,
合并同类项,得,
当m>2时,x>;
当m<2时,x<;
(4),
当x<-1时,原绝对值不等式可化为,
解得x>4,与x<-1矛盾,故此不等式无解;
当-1≤x≤0时,原绝对值不等式可化为,
解得x>与-1≤x≤0矛盾,故此不等式无解;
当0<x≤2时,原绝对值不等式可化为,
解得x>1,则1<x≤2;
当x>2,原绝对值不等式可化为,
解得x<4,则2<x<4,
故原不等式的解集为1<x<4.
【点睛】
本题考查了一元一次不等式与不等式组的解法及整数解的确定,熟练掌握一元一次不等式的解法及不等式组的解集的确定方法是解题的关键.
3、(1)x≥﹣1,数轴见解析;(2)﹣3<x≤2,最大整数解2
【解析】
【分析】
(1)根据一元一次不等式的解法,去分母,移项,合并同类项,系数化为1即可得解;
(2)先求出两个不等式的解集,再求其公共解,然后写出最大整数解即可.
【详解】
(1)解:移项得3x﹣5x≤2,
合并同类项得﹣2x≤2,
系数化为1得x≥﹣1,
在数轴上表示如下:
(2)解:,
由①得,x≤2,
由②得,x>﹣3,
不等式组的解集是﹣3<x≤2,
所以该不等式组的最大整数解2.
【点睛】
本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
4、(1)线下销量至少为900千克;(2)30
【解析】
【分析】
(1)设线下销售了千克,则线上销售了千克,根据线上销量不超过线下销量的4倍即可得出关于的一元一次不等式,解之取其中的最小值即可得出结论;
(2)利用销售总额销售单价销售数量,即可得出关于的一元一次方程,进而解方程即可得出结论.
【详解】
解:(1)设线下销售了千克,则线上销售了千克,
依题意得:,
解得:,
∴x的最小值为900,
答:线下销量至少为900千克.
(2)根据题意可得:
,
解得:,
答:的值为30.
【点睛】
本题考查了一元一次不等式的应用以及一元一次方程的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元一次方程.
5、
【解析】
【分析】
分别求出两个不等式的解集,然后取公共解集即可得出结论.
【详解】
解不等式①得:
解不等式②得:
不等式组的解集为:
【点睛】
此题考查的是解不等式组,掌握不等式的解法和公共解集的取法是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后作业题,共21页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步达标检测题,共16页。试卷主要包含了下列各式从左至右是因式分解的是等内容,欢迎下载使用。
这是一份初中数学第八章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了下列因式分解正确的是,已知c<a<b<0,若M=|a,下列各式从左至右是因式分解的是,下列分解因式结果正确的是等内容,欢迎下载使用。