初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试综合训练题
展开这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试综合训练题,共18页。试卷主要包含了不等式组的解集在数轴上应表示为,若a<b,则下列式子正确的是,若m<n,则下列各式正确的是等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组定向攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若不等式﹣3x<1,两边同时除以﹣3,得( )
A.x>﹣ B.x<﹣ C.x> D.x<
2、关于x的不等式(m-1)x>m-1可变成形为x<1,则( )
A.m<-1 B.m>-1 C.m>1 D.m<1
3、下列判断正确的是( )
A.由,得 B.由,得
C.由,得 D.由,得
4、关于的不等式的解集如图所示,则的值是( )
A.0 B. C.2 D.6
5、若实数a,b满足a>b,则下列不等式一定成立的是( )
A.a>b+2 B.a﹣1>b﹣2 C.﹣a>﹣b D.a2>b2
6、不等式组的解集在数轴上应表示为( )
A. B.
C. D.
7、若a<b,则下列式子正确的是( )
A.> B.﹣3a<﹣3b C.3a>3b D.a﹣3<b﹣3
8、某种商品进价为20元,标价为30元出售,商场规定可以打折销售,但其利润率不能少于5%,这种商品最多可以按几折销售?设这种商品打x折销售,则下列符合题意的不等式是( )
A.30x﹣20≥20×5% B.30x﹣20≤20×5%
C.30×﹣20≥20×5% D.30×﹣20≤20×5%
9、若m<n,则下列各式正确的是( )
A.﹣2m<﹣2n B. C.1﹣m>1﹣n D.m2<n2
10、能说明“若xy,则axay”是假命题的a的值是( )
A.3 B.2 C.1 D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、解不等式:x﹣3<2x的解集是 ___.
2、某种药品的说明书上贴有如下的标签,一次服用这种药品的剂量范围是_________mg.
用法用量:口服,每天60~90mg,分2-3次服 规格:######## 贮藏:######## |
3、已知,,则的取值范围是________.
4、不等式的解集是________.
5、若关于x的不等式2x-a≤4有3个非负整数解,则a的取值范围是_______.
三、解答题(5小题,每小题10分,共计50分)
1、解不等式组,并把解集表示在数轴上.
2、解不等式:.
3、为了打造区域中心城市,实现跨越式发展,某市花城新区建设正按投资计划有序推进.花城新区建设工程部因道路建设需要开挖土石方,计划每小时挖掘土石方540m3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机的有关信息如下表所示:
型号 | 租金(单位:元/台·时) | 挖掘土石方量(单位:m3/台·时) |
甲型 | 100 | 60 |
乙型 | 120 | 80 |
(1)用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机分别需要租多少台?
(2)每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案(每种型号的挖掘机至少租一台)?
4、阅读下列材料:根据绝对值的定义,表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=.
根据上述材料,解决下列问题:如图,在数轴上,点A、B表示的数分别是-4,8(A、B两点的距离用AB表示),点M是数轴上一个动点,表示数m.
(1)AB= 个单位长度;
(2)若=20,求m的值;(写过程)
(3)若关于的方程无解,则a的取值范围是 .
5、根据“a的2倍与1的差是负数”列出不等式:_________.
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
根据题意直接利用不等式的性质进行计算即可得出答案.
【详解】
解:不等式﹣3x<1,两边同时除以﹣3,得x>﹣.
故选:A.
【点睛】
本题主要考查不等式的基本性质.解不等式依据不等式的性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.
2、D
【解析】
【分析】
根据不等式的基本性质3求解即可.
【详解】
解:∵关于x的不等式(m-1)x>m-1的解集为x<1,
∴m-1<0,
则m<1,
故选:D.
【点睛】
本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质3.
3、D
【解析】
【分析】
根据一元一次不等式的解法逐项判断即可得.
【详解】
解:A、由,得,则此项错误;
B、由,得,则此项错误;
C、由,得,则此项错误;
D、由,得,则此项正确;
故选:D.
【点睛】
本题考查了解一元一次不等式,熟练掌握不等式的解法是解题关键.
4、C
【解析】
【分析】
本题是关于x的不等式,应先只把x看成未知数,求得x的解集,再根据数轴上的解集,来求得a的值.
【详解】
解:解不等式,得 ,
∵由数轴得到解集为x≤-1,
∴ ,
解得:a=2,
故选C.
【点睛】
本题考查解不等式和不等式解集的数轴表示,解题关键是根据数轴上的表示准确确定不等式的解集.
5、B
【解析】
【分析】
根据不等式的性质即可依次判断.
【详解】
解:当a>b时,a>b+2不一定成立,故错误;
当a>b时,a﹣1>b﹣1>b﹣2,成立,
当a>b时,﹣a<﹣b,故错误;
当a>b时,a2>b2不一定成立,故错误;
故选:B.
【点睛】
本题主要考查了不等式的性质的灵活应用,解题的关键是基本知识的熟练掌握.
6、B
【解析】
【分析】
在数轴上把不等式组的解集表示出来,即可选项答案.
【详解】
解:不等式组的解集在数轴上应表示为:
故选:B.
【点睛】
本题考查了在数轴上表示不等式组的解集等知识点,注意:在数轴上表示不等式组的解集时,包括该点时用实心点,不包括该点时用空心点.
7、D
【解析】
【分析】
根据不等式的基本性质判断即可.
【详解】
解:A选项,∵a<b,
∴,故该选项不符合题意;
B选项,∵a<b,
∴﹣3a>﹣3b,故该选项不符合题意;
C选项,∵a<b,
∴3a<3b,故该选项不符合题意;
D选项,∵a<b,
∴a﹣3<b﹣3,故该选项符合题意;
故选:D
【点睛】
本题考查了不等式的基本性质,掌握①不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;②不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键.
8、C
【解析】
【分析】
根据题意易得这种商品的利润为30×﹣20,然后根据“其利润率不能少于5%”可列出不等式.
【详解】
解:设这种商品打x折销售,由题意得:30×﹣20≥20×5%;
故选C.
【点睛】
本题主要考查一元一次不等式的应用,解题的关键是熟练掌握销售中的利润问题.
9、C
【解析】
【分析】
根据不等式的基本性质逐项判断即可.
【详解】
解:A:∵m<n,
∴﹣2m>﹣2n,
∴不符合题意;
B:∵m<n,
∴,
∴不符合题意;
C:∵m<n,
∴﹣m>﹣n,
∴1﹣m>1﹣n,
∴符合题意;
D: m<n,当时,m2>n2,
∴不符合题意;
故选:C.
【点睛】
本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.
10、D
【解析】
【分析】
根据不等式的性质,等式两边同时乘以或者除以一个负数,不等式的符号改变,判断即可.
【详解】
解:“若xy,则axay”是假命题,
则,
故选:D.
【点睛】
本题考查了不等式的基本性质,熟知不等式的三个基本性质是解本题的关键.
二、填空题
1、.
【解析】
【分析】
先移项,然后系数化为1,即可求出不等式的解集.
【详解】
解:,
∴,
∴,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查了一元一次不等式的解法,是基础题,正确计算是解题的关键.
2、20~45
【解析】
【分析】
根据60≤2次服用的剂量≤90,60≤3次服用的剂量≤90,列出两个不等式组,求出解集,再求出解集的并集即可.
【详解】
解:设一次服用的剂量为xmg,根据题意得;
60≤2x≤90或60≤3x≤90,
解得30≤x≤45或20≤x≤30,
则一次服用这种药品的剂量范围是:
20~45mg.
故答案为:20~45.
【点睛】
此题考查一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.
3、.
【解析】
【分析】
根据题意可知,即得出,解出不等式即可.
【详解】
∵,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查的是不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.
4、
【解析】
【分析】
移项、合并同类项、系数化为1即可求解.
【详解】
解:,
,
,
即,
故答案为:.
【点睛】
本题考查了解一元一次不等式,解题的关键是熟练掌握不等式的性质.
5、
【解析】
【分析】
由不等式2x-a≤4得,根据不等式有3个非负整数解知2≤<3,求解可得.
【详解】
解:解不等式2x-a≤4,得:,
∵不等式有3个非负整数解,
∴2≤<3,
解得,
故答案为:.
【点睛】
本题主要考查一元一次不等式的整数解,根据不等式有3个非负整数解得出的范围是解题的关键.
三、解答题
1、,图见解析
【解析】
【分析】
分别解出两个不等式的解集,并表示在数轴上,再找到公共解集即可解题.
【详解】
解:
由①得
由②得
把不等式组的解集表示在数轴上,如图,
∴原不等式组的解为
【点睛】
本题考查解一元一次不等式组、在数轴上表示不等式组的解集,熟知:同大取大,同小取小,大小小大中间找,大大小小找不到的原则是解题的关键.
2、
【解析】
【分析】
根据解一元一次不等式的一般步骤,去分母,移项,合并同类项,系数化为1,进行计算即可.
【详解】
解:
,
,
.
【点睛】
本题考查了解一元一次不等式,熟知解一元一次不等式的一般方法是解本题的关键.
3、(1)甲种型号的挖掘机需要租5台,乙种型号的挖掘机需要租3台;(2)共有一种租用方案,即甲种型号的挖掘机租1台,乙种型号的挖掘机租6台.
【解析】
【分析】
(1)设甲种型号的挖掘机需要租台,从而可得乙种型号的挖掘机需要租台,再根据“恰好完成每小时的挖掘量”建立方程,解方程即可得;
(2)设甲种型号的挖掘机租台,乙种型号的挖掘机租台,根据“每小时支付的租金不超过850元,又恰好完成每小时的挖掘量”建立不等式和方程,再结合为正整数进行分析即可得.
【详解】
解:(1)设甲种型号的挖掘机需要租台,则乙种型号的挖掘机需要租台,
由题意得:,
解得,
答:甲种型号的挖掘机需要租5台,乙种型号的挖掘机需要租3台;
(2)设甲种型号的挖掘机租台,乙种型号的挖掘机租台,
由题意得:,
解得,,
因为为正整数,
所以分以下四种情况进行讨论:
①当时,,符合题意;
②当时,,不符题意,舍去;
③当时,,不符题意,舍去;
④当时,,不符题意,舍去;
综上,共有一种租用方案,即甲种型号的挖掘机租1台,乙种型号的挖掘机租6台.
【点睛】
本题考查了一元一次方程的应用、一元一次不等式的应用,正确建立方程和不等式是解题关键.
4、(1)12;(2)m=-8或12;(3)
【解析】
【分析】
(1)根据题中所给数轴上两点距离公式可直接进行求解;
(2)由题意可分当,,三种情况进行分类求解即可;
(3)由题意可分当,,,四种情况进行分类求解,然后根据方程无解可得出a的取值范围.
【详解】
解:(1)由题意得:;
故答案为12;
(2)由题意得:①当时,则有:,解得:;
②当时,则有,方程无解;
③当时,则有,解得:,
综上所述:m=-8或12;
(3)由题意得:①当时,则有,解得:,
∵方程无解,
∴,解得:;
②当时,则有,解得:,
∵方程无解,
∴或,解得:或;
③当时,则有,解得:,
∵方程无解,
∴或,解得:或;
④当时,则有,解得:,
∵方程无解,
∴,解得:;
综上所述:当关于的方程无解,则a的取值范围是;
故答案为.
【点睛】
本题主要考查数轴上两点距离、一元一次不等式的解法及一元一次方程的解法,熟练掌握数轴上两点距离、一元一次不等式的解法及一元一次方程的解法是解题的关键.
5、2a﹣1<0
【解析】
【分析】
根据题意列出不等式即可.
【详解】
解:由题意得:2a﹣1<0,
故答案为:2a﹣1<0.
【点睛】
此题主要考查列不等式,解题的关键是根据题意找到不等关系.
相关试卷
这是一份2020-2021学年第六章 整式的运算综合与测试同步测试题,共17页。试卷主要包含了下列计算正确的是等内容,欢迎下载使用。
这是一份初中北京课改版第九章 数据的收集与表示综合与测试当堂达标检测题,共18页。试卷主要包含了下列说法中正确的是,下列调查中,最适合采用全面调查等内容,欢迎下载使用。
这是一份北京课改版第八章 因式分解综合与测试随堂练习题,共17页。试卷主要包含了下列变形,属因式分解的是,下列因式分解正确的是,下列各式中,正确的因式分解是等内容,欢迎下载使用。