2021学年第四章 一元一次不等式和一元一次不等式组综合与测试巩固练习
展开这是一份2021学年第四章 一元一次不等式和一元一次不等式组综合与测试巩固练习,共20页。试卷主要包含了不等式组的解集在数轴上应表示为,若a>b,则等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知a>b,则下列选项不正确是( )
A.a+c>b+c B.a﹣b>0 C. D.a•c2≥b•c2
2、下列判断正确的是( )
A.由,得 B.由,得
C.由,得 D.由,得
3、若,则x一定是( )
A.零 B.负数 C.非负数 D.负数或零
4、若a>b,则下列不等式不正确的是( )
A.﹣5a>﹣5b B. C.5a>5b D.a﹣5>b﹣5
5、不等式组的解集在数轴上应表示为( )
A. B.
C. D.
6、已知关于x的不等式组只有四个整数解,则实数a的取值范围( )
A.﹣3≤a<﹣2 B.﹣3≤a≤﹣2 C.﹣3<a≤﹣2 D.﹣3<a<﹣2
7、若a>b,则( )
A.a﹣1≥b B.b+1≥a C.2a+1>2b+1 D.a﹣1>b+1
8、如果关于x的不等式组有且只有3个奇数解,且关于y的方程3y+6a=22-y的解为非负整数,则符合条件的所有整数a的积为( )
A.-3 B.3 C.-4 D.4
9、某次知识竞赛共有30道选择题,答对一题得10分,若答错或不答一道题,则扣3分,要使总得分不少于70分则应该至少答对几道题?若设答对x题,可得式子为( )
A.10x﹣3(30﹣x)>70 B.10x﹣3(30﹣x)≤70
C.10x﹣3x≥0 D.10x﹣3(30﹣x)≥70
10、若实数a,b满足a>b,则下列不等式一定成立的是( )
A.a>b+2 B.a﹣1>b﹣2 C.﹣a>﹣b D.a2>b2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若关于x的不等式有三个正整数解,则a的取值范围是____________.
2、如果代数式x+7的值不小于零,那么x的取值范围是____.
3、如果不等式(b+1)x<b+1的解集是x>1,那么b的范围是 ___.
4、不等式的解集是________.
5、不等式组的解为_________.
三、解答题(5小题,每小题10分,共计50分)
1、有一批产品需要生产装箱,3台A型机器一天刚好可以生产6箱产品,而4台B型机器一天可以生产5箱还多20件产品.已知每台A型机器比每台B型机器一天多生产40件.
(1)求每箱装多少件产品?
(2)现需生产28箱产品,若用1台A型机器和2台B型机器生产,需几天完成?
(3)若每台A型机器一天的租赁费用是240元,每台B型机器一天的租赁费用是170元,可供租赁的A型机器共3台,B型机器共4台.现要在3天内(含3天)完成28箱产品的生产,请直接写出租赁费用最省的方案(机器租赁不足一天按一天费用结算).
2、(1)解不等式3(2y﹣1)>1﹣2(y+3);
(2)解不等式≥+1,并把它的解集在数轴上表示出来.
3、解不等式组,并把解集表示在数轴上.
4、公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元的月租费,每通话1分钟付费0.10元,两种方式不足1分钟均按1分钟计算.
(1)如果一个月通话100分钟,甲种方式应付话费多少元?用乙种方式应付话费多少元?
(2)请你为用户设计一个方案,使用户能合理地选择付费方式.
5、解下列不等式(组),并把解集表示在数轴上.
(1);
(2)
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
由题意直接根据不等式的性质对各个选项进行分析判断即可.
【详解】
解:A.∵a>b,
∴a+c>b+c,故本选项不符合题意;
B.∵a>b,
∴a﹣b>b﹣b,
∴a﹣b>0,故本选项不符合题意;
C.∵a>b,
∴,故本选项符合题意;
D.∵a>b,c2≥0,
∴a•c2≥b•c2,故本选项不符合题意;
故选:C.
【点睛】
本题考查不等式的性质,能够正确利用不等式的性质是解题的关键,注意不等式两边同时乘除一个负数要改变不等号的方向.
2、D
【解析】
【分析】
根据一元一次不等式的解法逐项判断即可得.
【详解】
解:A、由,得,则此项错误;
B、由,得,则此项错误;
C、由,得,则此项错误;
D、由,得,则此项正确;
故选:D.
【点睛】
本题考查了解一元一次不等式,熟练掌握不等式的解法是解题关键.
3、D
【解析】
【分析】
根据绝对值的性质可得,求解即可.
【详解】
解:∵
∴,解得
故选D
【点睛】
此题考查了绝对值和不等式的性质,解题的关键是熟练掌握绝对值和不等式的有关性质.
4、A
【解析】
【分析】
根据不等式的基本性质逐项判断即可得.
【详解】
解:A、不等式两边同乘以,改变不等号的方向,则,此项不正确;
B、不等式两边同除以5,不改变不等号的方向,则,此项正确;
C、不等式两边同乘以5,不改变不等号的方向,则,此项正确;
D、不等式两边同减去5,不改变不等号的方向,则,此项正确;
故选:A.
【点睛】
本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.
5、B
【解析】
【分析】
在数轴上把不等式组的解集表示出来,即可选项答案.
【详解】
解:不等式组的解集在数轴上应表示为:
故选:B.
【点睛】
本题考查了在数轴上表示不等式组的解集等知识点,注意:在数轴上表示不等式组的解集时,包括该点时用实心点,不包括该点时用空心点.
6、C
【解析】
【分析】
先求出不等式解组的解集为,即可得到不等式组的4个整数解是:1、0、-1、-2,由此即可得到答案.
【详解】
解:
解不等式①得;
解不等式②得;
∵不等式组有解,
∴不等式组的解集是,
∴不等式组只有4个整数解,
∴不等式组的4个整数解是:1、0、-1、-2,
∴
故选C.
【点睛】
本题主要考查了解一元一次不等式组,根据不等式组的整数解情况求参数,解题的关键在于能够熟练掌握解不等式组的方法.
7、C
【解析】
【分析】
举出反例即可判断A、B、D,根据不等式的性质即可判断C.
【详解】
解:A、若a=0.5,b=0.4,a>b,但是a﹣1<b,不符合题意;
B、若a=3,b=1,a>b,但是b+1<a,不符合题意;
C、∵a>b,∴2a+1>2b+1,符合题意;
D、若a=0.5,b=0.4,a>b,但是a﹣1<b+1,不符合题意.
故选:C.
【点睛】
此题考查不等式的性质,对性质的理解是解题的关键.不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.
8、A
【解析】
【分析】
先求解不等式组,根据解得范围确定的范围,再根据方程解的范围确定的范围,从而确定的取值,即可求解.
【详解】
解:由关于x的不等式组解得
∵关于x的不等式组有且只有3个奇数解
∴,解得
关于y的方程3y+6a=22-y,解得
∵关于y的方程3y+6a=22-y的解为非负整数
∴,且为整数
解得且为整数
又∵,且为整数
∴符合条件的有、、
符合条件的所有整数a的积为
故选:A
【点睛】
本题主要考查一元一次不等式组的解法及一元一次方程的解法,熟练掌握一元一次不等式组的解法及一元一次方程的解法是解题的关键.
9、D
【解析】
【分析】
根据得分−扣分不少于70分,可得出不等式.
【详解】
解:设答对x题,答错或不答(30−x),
则10x−3(30−x)≥70.
故选:D.
【点睛】
本题考查了由实际问题抽象出一元一次不等式的知识,解答本题的关键是找到不等关系.
10、B
【解析】
【分析】
根据不等式的性质即可依次判断.
【详解】
解:当a>b时,a>b+2不一定成立,故错误;
当a>b时,a﹣1>b﹣1>b﹣2,成立,
当a>b时,﹣a<﹣b,故错误;
当a>b时,a2>b2不一定成立,故错误;
故选:B.
【点睛】
本题主要考查了不等式的性质的灵活应用,解题的关键是基本知识的熟练掌握.
二、填空题
1、
【解析】
【分析】
首先确定不等式的正整数解,则a的范围即可求得.
【详解】
解:关于x的不等式恰有3个正整数解,
则正整数解是:1,2,3.
则a的取值范围:.
故答案为:.
【点睛】
本题主要考查一元一次不等式组的整数解,根据a的取值范围正确确定a与3和4的关系是关键.
2、.
【解析】
【分析】
根据题意列不等式求解.
【详解】
根据题意,得:x+7≥0,
移项,得:x≥﹣7,
系数化为1,得:,
故答案为:.
【点睛】
此题考查不等式的实际应用,正确理解题中的数量关系列出不等式解答是解题的关键.
3、b<-1
【解析】
【分析】
根据不等式的基本性质3可知b+1<0,解之可得答案.
【详解】
解:∵(b+1)x<b+1的解集是x>1,
∴b+1<0,
解得b<-1,
故答案为:b<-1.
【点睛】
本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质3:不等式两边同时乘以或除以同一个负数,不等号的方向改变.
4、
【解析】
【分析】
移项、合并同类项、系数化为1即可求解.
【详解】
解:,
,
,
即,
故答案为:.
【点睛】
本题考查了解一元一次不等式,解题的关键是熟练掌握不等式的性质.
5、
【解析】
【分析】
解不等式组即可.
【详解】
解:,
解不等式得,;
解不等式得,;
不等式组的解集为.
【点睛】
本题考查了解不等式组,解题关键是准确解每个不等式,正确确定不等式组的解集.
三、解答题
1、(1)60件;(2)6天;(3)A型机器前2天租3台,第3天租2台;B型机器每天租3台
【解析】
【分析】
(1)设每箱装x件产品,根据“每台A型机器比每台B型机器一天多生产40件”列出方程求解即可;
(2)根据第(1)问的答案可求得每台A型机器每天生产120件,每台B型机器每天生产80件,根据工作时间=工作总量÷工作效率即可求得答案;
(3)先将原问题转化为“若3天共有9台次A型机器,12台次B型机器可用,求这3天完成28箱(1680件产品)所需的最省费用”,再设租A型机器a台次,则租B型机器的台次数为台次,由此可求得a的取值范围,进而可求得符合题意的a的整数解,再分别求得对应的总费用,比较大小即可.
【详解】
解:(1)设每箱装x件产品,
根据题意可得:,
解得:,
答:每箱装60件产品;
(2)由(1)得:每台A型机器每天生产(件),
每台B型机器每天生产(件),
∴
(天),
答:若用1台A型机器和2台B型机器生产,需6天完成;
(3)根据题意可把问题转化为:若3天共有9台次A型机器,12台次B型机器可用,求这3天完成28箱(1680件产品)所需的最省费用.
设租A型机器a台次,则租B型机器的台数为台次,
∵共有12台次B型机器可用,
∴,
解得a≥6,
∵共有9台次A型机器可用,
∴a≤9,
∴6≤9≤9,
又∵a为整数,
∴若a=9,则,
需选B型机器8台次,此时费用共为240×9+170×8=3520(元);
若a=8,则,
需选B型机器9台次,此时费用共为240×8+170×9=3450(元);
若a=7,则,
需选B型机器11台次,此时费用共为240×7+170×11=3550(元);
若a=6,则,
需选B型机器12台次,此时费用共为240×6+170×12=3480(元);
∵3450<3480<3520<3550,
∴3天中选择共租A型机器8台次,B型机器9台次费用最省,
如:A型机器前两天租3台,第3天租2台,B型机器每天租3台,此时的费用最省,最省总费用为3450元,
答:共有4种方案可选择,分别为:
3天中共租A型机器9台次,B型机器8台次;
3天中共租A型机器8台次,B型机器9台次;
3天中共租A型机器7台次,B型机器11台次;
3天中共租A型机器6台次,B型机器12台次,
其中3天中共租A型机器8台次,B型机器9台次(如A型机器前两天租3台,第3天租2台,B型机器每天租3台),此时的费用最省,最省总费用为3450元.
【点睛】
本题考查了一元一次方程的应用以及解一元一次不等式,解题的关键是:找准等量关系,正确列出一元一次方程以及根据各数量之间的关系,正确列出一元一次不等式.
2、(1)y>﹣;(2)x≥,数轴见解析
【解析】
【分析】
(1)根据一元一次不等式的性质,先去括号,再移项并合并同类项,通过计算即可得到答案;
(2)根据一元一次不等式的性质,先去分母,再去括号,最后移项并合并同类项,结合数轴的性质作图,即可得到答案.
【详解】
(1)去括号,得:6y﹣3>1﹣2y﹣6,
移项,得:6y+2y>1﹣6+3,
合并同类项,得:8y>﹣2,
系数化成1得:y>﹣;
(2)去分母,得:﹣2(2x﹣1)≥﹣3(2x+1)+6,
去括号,得:﹣4x+2≥﹣6x﹣3+6,
移项,得:﹣4x+6x≥﹣3+6﹣2,
合并同类项,得:2x≥1,
系数化为1得:x≥
数轴表示如下:
.
【点睛】
本题考查了数轴、一元一次不等式的知识;解题的关键是熟练掌握一元一次不等式的性质,从而完成求解.
3、,图见解析
【解析】
【分析】
分别解出两个不等式的解集,并表示在数轴上,再找到公共解集即可解题.
【详解】
解:
由①得
由②得
把不等式组的解集表示在数轴上,如图,
∴原不等式组的解为
【点睛】
本题考查解一元一次不等式组、在数轴上表示不等式组的解集,熟知:同大取大,同小取小,大小小大中间找,大大小小找不到的原则是解题的关键.
4、(1)甲种方式付话费15元,乙种方式付话费28元;(2)当通话时间低于360分钟时,选甲种付费方式合算;当通话时间为360分钟时,选择两种付费方式一样合算;当通话时间超过360分钟时,选择乙种付费方式合算
【解析】
【分析】
(1)直接用0.15乘以100和用18加0.10乘以100,即可求解;
(2)设一个月通话x分钟,则甲种方式应付话费 元,乙种方式应付话费 元,然后根据题意可得当18+0.10x=0.15x时,两种付费方式相同;当18+0.10x>0.15x时,甲种付费方式合算;当18+0.10x<0.15x时,乙种付费方式合算, 即可求解.
【详解】
解:(1)甲:0.15×100=15(元);
乙:18+0.10×100=28(元);
答:甲种方式付话费15元,乙种方式付话费28元.
(2)设一个月通话x分钟,则甲种方式应付话费 元,乙种方式应付话费 元,
当18+0.10x=0.15x时,两种付费方式相同,此时解得:x=360,
当18+0.10x>0.15x时,甲种付费方式合算,此时解得:x<360,
当18+0.10x<0.15x时,乙种付费方式合算,此时解得:x>360,
∴当通话时间低于360分钟时,选甲种付费方式合算;当通话时间为360分钟时,选择两种付费方式一样合算;当通话时间超过360分钟时,选择乙种付费方式合算.
【点睛】
本题主要考查了列代数式以及一元一次方程和一元一次不等式的实际应用,明确题意,准确得到数量关系是解题的关键 .
5、(1)x≤1,见解析;(2)﹣3≤x<1,见解析
【解析】
【分析】
(1)按照去分母,去括号,移项,合并,系数化为1的步骤解不等式,然后在数轴上表示出不等式的解集即可;
(2)先求出每个不等式的解集,然后求出不等式组的解集,最后在数轴上表示不等式组的解集即可.
【详解】
解:(1),
去分母得:,
去括号得: 4x+2≥9x﹣9+6,
移项得:4x﹣9x≥﹣9+6﹣2,
合并得:﹣5x≥﹣5,
系数化为1得:x≤1,
在数轴上表示为:
(2)
解不等式5x﹣4≤2+7x,得:x≥﹣3,
解不等式x,得:x<1,
则不等式组的解集为﹣3≤x<1,
将不等式组的解集表示在数轴上如下:
【点睛】
本题主要考查了解一元一次不等式和解一元一次不等式组,并在数轴上表示不等式和不等式组的解集,解题的关键在于能够熟练掌握解一元一次不等式的方法.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后测评,共26页。试卷主要包含了下列命题中,是真命题的是,已知,则的余角的补角是等内容,欢迎下载使用。
这是一份2021学年第七章 观察、猜想与证明综合与测试课时作业,共23页。
这是一份2021学年第六章 整式的运算综合与测试精练,共19页。试卷主要包含了已知,下列计算正确的是,有理数a,多项式+1的次数是等内容,欢迎下载使用。