北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试综合训练题
展开这是一份北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试综合训练题,共23页。试卷主要包含了下列判断不正确的是,不等式组的最小整数解是,若成立,则下列不等式不成立的是等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组章节训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、整数a使得关于x的不等式组至少有4个整数解,且关于y的方程1﹣3(y﹣2)=a有非负整数解,则满足条件的整数a的个数是( )
A.6个 B.5个 C.3个 D.2个
2、已知关于的不等式组的整数解共有个,则的取值范围是( )
A. B. C. D.
3、关于的不等式组有解且不超过3个整数解,若,那么的取值范围是( )
A. B. C. D.
4、下列判断不正确的是( )
A.若,则 B.若,则
C.若,则 D.若,则
5、已知x=2不是关于x的不等式2x﹣m>4的整数解,x=3是关于x的不等式2x﹣m>4的一个整数解,则m的取值范围为( )
A.0<m<2 B.0≤m<2 C.0<m≤2 D.0≤m≤2
6、不等式组的最小整数解是( )
A.5 B.0 C. D.
7、不等式组的解集在数轴上表示正确的是( )
A. B.
C. D.
8、若成立,则下列不等式不成立的是( )
A. B. C. D.
9、若a>b,则下列不等式一定成立的是( )
A.﹣2a<﹣2b B.am<bm C.a﹣3<b﹣3 D.+1<+1
10、不等式组的解集在数轴上应表示为( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若不等式组的解集为,则的取值范围为__________.
2、据了解,受国庆节期间火爆上映的六部影片的影响,而其相关著作也受到广大书迷朋友的追捧.已知某网上书店《长津湖》的销售单价与《我和我的父辈》相同,《铁道英雄》的销售单价是《五个扑水的少年》单价的3倍,《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元;若自电影上映以来,《长津湖》与《五个扑水的少年》的日销售量相同,《我和我的父辈》的日销售量为《铁道英雄》日销售量的3倍,《长津湖》与《铁道英雄》的日销售量和为450本,且《长津湖》的日销售量不低于《铁道英雄》的日销售量的且小于230本,《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,则当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为______元.
3、初三的几位同学拍了一张合影作为留念,已知拍一张底片需要 5 元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数至少为__________.
4、若关于x的不等式组的整数解共有5个,则a的取值范围_________.
5、判断正误:
(1)由,得;( )
(2)由,得;( )
(3)由,得;( )
(4)由,得;( )
(5)由,得;( )
(6)由,得.( )
三、解答题(5小题,每小题10分,共计50分)
1、倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司购买型号和型号垃圾分拣机器人共台,其中型号机器人不少于型号机器人的倍设该垃圾处理厂购买台型号机器人.
(1)该垃圾处理厂最多购买几台型号机器人?
(2)机器人公司报价型号机器人万元台,型号机器人万元台,要使总费用不超过万元,则共有哪几种购买方案?
2、a取什么值时,代数式3-2a的值:
(1)大于1?
(2)等于1?
(3)小于1?
3、不等式组的解集是关于的一元一次不等式解集的一部分,求的取值范围.
4、解不等式:
(1)2x+3>6﹣x;
(2).
5、公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元的月租费,每通话1分钟付费0.10元,两种方式不足1分钟均按1分钟计算.
(1)如果一个月通话100分钟,甲种方式应付话费多少元?用乙种方式应付话费多少元?
(2)请你为用户设计一个方案,使用户能合理地选择付费方式.
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
解不等式组中两个不等式得出,结合其整数解的情况可得,再解方程得,由其解为非负数得出,最后根据方程的解必须为非负整数可得的取值情况.
【详解】
解:解不等式,得:,
解不等式,得:,
不等式组至少有4个整数解,
,
解得,
解关于的方程得,
方程有非负整数解,
,
则,
所以,
其中能使为非负整数的有2,3,4,5,6,7,共6个,
故选:A.
【点睛】
本题主要考查一元一次不等式组的整数解,解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
2、A
【解析】
【分析】
先分别求出每个不等式的解集,然后确定不等式组的解集,最后根据整数解的个数确定的范围.
【详解】
解:
解不等式①得:x,
解不等式②得:x<,
∴不等式组的解集是<x<,
∵原不等式组的整数解有3个为1,0,-1,
∴-2≤<-1.
故选择:A.
【点睛】
本题考查了解一元一次不等式、解一元一次不等式组、不等式组的整数解的应用,确定不等式组的解集是解答本题的关键.
3、C
【解析】
【分析】
先解不等式组,在根据不超过3个整数解,确定的取值范围,即可得出结论.
【详解】
解:,
解不等式得,
解不等式得,,
因为不等式组有解,故解集为:,
因为不等式组有不超过3个整数解,
所以,,
把代入,,
解得,
故选:C.
【点睛】
本题考查了一元一次不等式组的整数解问题,解题关键是熟练解不等式组,根据有解和整数解的个数列出不等式组.
4、D
【解析】
【分析】
根据不等式得性质判断即可.
【详解】
A. 若,则不等式两边同时加3,不等号不变,选项正确;
B. 若,则不等式两边同时乘-3,不等号改变,选项正确;
C. 若2,则不等式两边同时除2,不等号不变,选项正确;
D. 若,则不等式两边同时乘,有可能,选项错误;
故选:D.
【点睛】
本题考查不等式得性质,需要特别注意不等式两边同时乘(除)一个正数不等号不变,同时乘(除)一个负数不等号改变.
5、B
【解析】
【分析】
由2x-m>4得x>,根据x=2不是不等式2x-m>4的整数解且x=3是关于x的不等式2x-m>4的一个整数解得出≥2、<3,解之即可得出答案.
【详解】
解:由2x-m>4得x>,
∵x=2不是不等式2x-m>4的整数解,
∴≥2,
解得m≥0;
∵x=3是关于x的不等式2x-m>4的一个整数解,
∴<3,
解得m<2,
∴m的取值范围为0≤m<2,
故选:B.
【点睛】
本题主要考查了一元一次不等式的整数解,解题的关键是根据不等式整数解的情况得出关于m的不等式.
6、C
【解析】
【分析】
分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.
【详解】
解:解不等式,得:,
解不等式,得:,
故不等式组的解集为:,
则该不等式组的最小整数解为:.
故选:C.
【点睛】
本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
7、C
【解析】
【分析】
根据不等式组的解集的表示方法即可求解.
【详解】
解:∵不等式组的解集为
故表示如下:
故选:C.
【点睛】
本题考查的是一元一次不等式组的解集的表示方法,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
8、D
【解析】
【分析】
根据不等式的性质逐项判断即可.
【详解】
解:A、给两边都减去1,不等号的方向不变,故本选项正确,不符合题意;
B、给两边都加上x,不等号的方向不变,故本选项正确,不符合题意;
C、给两边都除以2,不等号的方向不变,故本选项正确,不符合题意;
D、给两边都乘以﹣3,不等号的方向要改变,故本选项不正确,符合题意,
故选:D.
【点睛】
本题考查不等式的性质,熟练掌握不等式的性质,注意不等号的方向是解答的关键.
9、A
【解析】
【分析】
由题意直接依据不等式的基本性质对各个选项进行分析判断即可.
【详解】
解:A.∵a>b,
∴﹣2a<﹣2b,故本选项符合题意;
B.a>b,当m>0时,am>bm,故本选项不符合题意;
C.∵a>b,
∴a﹣3>b﹣3,故本选项不符合题意;
D.∵a>b,
∴,
∴,故本选项不符合题意;
故选:A.
【点睛】
本题考查不等式的基本性质,注意掌握不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
10、B
【解析】
【分析】
在数轴上把不等式组的解集表示出来,即可选项答案.
【详解】
解:不等式组的解集在数轴上应表示为:
故选:B.
【点睛】
本题考查了在数轴上表示不等式组的解集等知识点,注意:在数轴上表示不等式组的解集时,包括该点时用实心点,不包括该点时用空心点.
二、填空题
1、
【解析】
【分析】
先解一元一次不等式组中的两个不等式,再根据解集为,可得,从而可得答案.
【详解】
解:
由①得:
由②得:
不等式组的解集为,
故答案为:
【点睛】
本题考查的是一元一次不等式组的解法,利用一元一次不等式组的解集求解参数的取值范围,掌握一元一次不等式组的解法是解题的关键.
2、
【解析】
【分析】
设《长津湖》的销售单价为m元,则《五个扑水的少年》销售单价为n元;《长津湖》的日销售量a本,《铁道英雄》日销售量为b本,则《我和我的父辈》销售单价为m元,《铁道英雄》的销售单价为3n元;《五个扑水的少年》的日销售量为a本,《我和我的父辈》的日销售量为3b元,根据题意,列出相应的方程和不等式,得出未知数的取值范围,最后根据当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即可求解.
【详解】
解:设《长津湖》的销售单价为m元,则《五个扑水的少年》销售单价为n元;《长津湖》的日销售量a本,《铁道英雄》日销售量为b本,则《我和我的父辈》销售单价为m元,《铁道英雄》的销售单价为3n元;《五个扑水的少年》的日销售量为a本,《我和我的父辈》的日销售量为3b元,
∵《长津湖》与《铁道英雄》的日销售量和为450本,
∴a+b=450,即b=450-a,
∵《长津湖》的日销售量不低于《铁道英雄》的日销售量的且小于230本,
∴ ,即,
解得: ,
∵《长津湖》与《五个扑水的少年》的单价和大于50元且不超过60元,
∴ ,
∵《长津湖》与《铁道英雄》的日销售额之和比《我和我的父辈》、《五个扑水的少年》的日销售额之和多2205元,
∴ ,
∵b=450-a,
∴,
∴ ,
∴ ,
∵,
∴,
∴ ,即 ,
∴当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,即 最大,
∴此时的值最小,则m最大,
∵,
∴a的最小值为180,
将a=180代入,
解得: ,
即 ,
∵,
∴,即 ,
∵m最大,
∴ ,即当《长津湖》、《铁道英雄》这两部小说日销售额之和最多时,《长津湖》的单价为元.
故答案为:
【点睛】
本题主要考查了一元一次不等式的应用等知识,根据题意设未知数,建立相应的方程和不等式求出未知数的值或取值范围是解决问题的关键.
3、6人
【解析】
【分析】
根据题意得出不等关系,即平均每人分摊的钱不足1.5元,由此列一元一次不等式求解即可.
【详解】
解:设参加合影的同学人数为x人,
由题意得:5+0.5x<1.5x,
解得:x>5,
∵x取正整数,
∴参加合影的同学人数至少为6人.
故答案为:6人.
【点睛】
本题考查了一元一次不等式的应用,弄清题意,准确找出不等关系是解题的关键.
4、﹣1<a≤0
【解析】
【分析】
先求出不等式组的解集,再根据已知条件得出−1<a≤0即可.
【详解】
解:,
解不等式①,得x<5,
解不等式②,得x≥a,
所以不等式组的解集是a≤x<5,
∵关于x的不等式组的整数解共有5个,
∴−1<a≤0,
故答案为:−1<a≤0.
【点睛】
本题考查了解一元一次不等式组的整数解和解一元一次不等式组,能根据不等式的解集找出不等式组的解集是解此题的关键.
5、 正确 正确 正确 正确 错误 错误
【解析】
【分析】
根据不等式的性质解答即可.
【详解】
解:∵2a>3,
∴不等式的两边都除以2得:a>,
∴(1)正确;
∵2-a<0,
∴-a<-2,
∴a>2,
∴(2)正确;
∵,
∴不等式的两边都乘以2得:,
∴(3)正确;
∵,
∴不等式的两边都加上m得:,
∴(4)正确;
∵,
∴不等式的两边都乘以-3得:,
∴(5)错误;
∵,
∴不等式的两边都乘以a不能得到:,
∵a的正负不能确定,
∴(6)错误;
【点睛】
本题考查了不等式的基本性质的应用,注意:不等式的基本性质有①不等式的两边都加上或都减去同一个数或整式,不等式的符号不改变,②不等式的两边都乘以或都除以同一个正数,不等式的符号不改变,③不等式的两边都乘以或都除以同一个负数,不等式的符号要改变.
三、解答题
1、(1)25台;(2)方案1:A23台,B37台;方案2:A24台;B36台;方案3:A25台,B35台.
【解析】
【分析】
(1)设该垃圾处理厂购买x台A型号机器人,则购买(60一x)台B型号机器人,根据购进B型号机器人的数量不少于A型号机器人的1.4倍,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;
(2)根据总价=单价×数量,结合总价不超过510万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,结合x为整数且x≤25,即可得出各购买方案.
【详解】
解:(1)设该垃圾处理厂购买x台A型号机器人,则购买(60一x)台B型号机器人,依题意得:
60-x≥1.4x
解得:x≤25
答:该垃圾处理厂最多购买25台A型号机器人.
(2)依题意得:6x+10(60-x)≤510,
解得:x≥
又∵x为整数,且x≤25
∴x可以取23,24,25,
∴共有3种购买方案,
方案1:购买23台A型号机器人,37台B型号机器人;
方案2:购买24台A型号机器人,36台B型号机器人;
方案3:购买25台A型号机器人,35台B型号机器人.
【点睛】
本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.
2、(1)a<1;(2)a =1;(3)a>1
【解析】
【分析】
(1)根据代数式大于1列不等式,解不等式即可;
(2)根据代数式等于1列方程,解方程即可;
(3)根据代数式小于1列不等式,解不等式即可.
【详解】
解:(1)由3-2a>1,
移项合并得-2a>-2,
解得a<1;
(2)由3-2a=1,
移项合并得-2a=-2,
解得a =1;
(3)由3-2a<1,
移项合并得-2a<-2,
解得a>1.
【点睛】
本题考查列一元一次不等式与一元一次方程,解一元一次不等式与一元一次方程,掌握列不等式与方程的方法是解题关键.
3、
【解析】
【分析】
先求出不等式组的解集为,然后分别讨论当时,当时,当时,不等式的解集,然后根据不等式组的解集是关于的一元一次不等式解集的一部分进行求解即可.
【详解】
解:
解不等式①得:,
解不等式②得:,
∴不等式的解集为,
∵,
∴当时,
∵不等式组的解集是关于的一元一次不等式解集的一部分,
∴,
∴;
同理当时,,
∵不等式组的解集是关于的一元一次不等式解集的一部分,
∴,
∴;
当时,恒成立,即关于的一元一次不等式的解集为一切实数,
∴此时也满足不等式组的解集是关于的一元一次不等式解集的一部分,
∴综上所述,.
【点睛】
本题主要考查了解一元一次不等式和解一元一次不等式组,解题的关键在于能够熟练掌握解不等式的方法.
4、(1)x>1;(2)﹣6≤x<2
【解析】
【分析】
(1)把不等式移项,合并同类项,然后系数化1即可;
(2)先把不等式组标号,解每个不等式,求每个不等式解集的公共部分即可.
【详解】
解:(1)2x+3>6﹣x,
移项得:2x+x>6﹣3,
合并得:3x>3,
系数化1得x>1;
(2),
解不等式①得:x≥﹣6,
解不等式②得:x<2,
不等式组的解集为:﹣6≤x<2.
【点睛】
本题考查一元一次不等式,与一元一次不等式组的解法,掌握一元一次不等式的解法与步骤,不等式组的解法是解题关键.
5、(1)甲种方式付话费15元,乙种方式付话费28元;(2)当通话时间低于360分钟时,选甲种付费方式合算;当通话时间为360分钟时,选择两种付费方式一样合算;当通话时间超过360分钟时,选择乙种付费方式合算
【解析】
【分析】
(1)直接用0.15乘以100和用18加0.10乘以100,即可求解;
(2)设一个月通话x分钟,则甲种方式应付话费 元,乙种方式应付话费 元,然后根据题意可得当18+0.10x=0.15x时,两种付费方式相同;当18+0.10x>0.15x时,甲种付费方式合算;当18+0.10x<0.15x时,乙种付费方式合算, 即可求解.
【详解】
解:(1)甲:0.15×100=15(元);
乙:18+0.10×100=28(元);
答:甲种方式付话费15元,乙种方式付话费28元.
(2)设一个月通话x分钟,则甲种方式应付话费 元,乙种方式应付话费 元,
当18+0.10x=0.15x时,两种付费方式相同,此时解得:x=360,
当18+0.10x>0.15x时,甲种付费方式合算,此时解得:x<360,
当18+0.10x<0.15x时,乙种付费方式合算,此时解得:x>360,
∴当通话时间低于360分钟时,选甲种付费方式合算;当通话时间为360分钟时,选择两种付费方式一样合算;当通话时间超过360分钟时,选择乙种付费方式合算.
【点睛】
本题主要考查了列代数式以及一元一次方程和一元一次不等式的实际应用,明确题意,准确得到数量关系是解题的关键 .
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试当堂达标检测题,共20页。试卷主要包含了命题等内容,欢迎下载使用。
这是一份初中北京课改版第七章 观察、猜想与证明综合与测试课时作业,共21页。试卷主要包含了下列说法中正确的是,已知,则的余角的补角是,命题等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试习题,共17页。试卷主要包含了下列计算中,正确的是,下列运算正确的是,已知下列一组数,下面说法正确的是,化简x-2,下列说法正确的是等内容,欢迎下载使用。