初中第四章 一元一次不等式和一元一次不等式组综合与测试课后复习题
展开这是一份初中第四章 一元一次不等式和一元一次不等式组综合与测试课后复习题,共18页。试卷主要包含了已知a>b,则下列选项不正确是,若m<n,则下列各式正确的是,下列说法正确的是,若,则x一定是等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组专项练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,则a的取值范围是( )
A.a<﹣2 B.a≤1 C.﹣2<a≤1 D.﹣2≤a≤1
2、解集在数轴上表示为如图所示的不等式的是( )
A. B. C. D.
3、若m>n,则下列不等式成立的是( )
A.m﹣5<n﹣5 B. C.﹣5m>﹣5n D.
4、关于的两个代数式与的值的符号相反,则的取值范围是( )
A. B. C. D.或
5、已知a>b,则下列选项不正确是( )
A.a+c>b+c B.a﹣b>0 C. D.a•c2≥b•c2
6、若m<n,则下列各式正确的是( )
A.﹣2m<﹣2n B. C.1﹣m>1﹣n D.m2<n2
7、若整数a使得关于x的方程的解为非负数,且使得关于y的一元一次不等式组至少有3个整数解.则所有符合条件的整数a的和为( )
A.23 B.25 C.27 D.28
8、下列说法正确的是( )
A.若a<b,则3a<2b B.若a>b,则ac2>bc2
C.若﹣2a>2b,则a<b D.若ac2<bc2,则a<b
9、若,则x一定是( )
A.零 B.负数 C.非负数 D.负数或零
10、如图,下列结论正确的是( )
A.c>a>b B. C.|a|<|b| D.abc>0
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、若关于x的不等式有三个正整数解,则a的取值范围是____________.
2、若不等式(m﹣3)x>m﹣3,两边同除以(m﹣3),得x<1,则m的取值范围为_____.
3、若x<y,且(6﹣a)x>(6﹣a)y,则a的取值范围是 ______.
4、不等式4x﹣3≤2x+1的非负整数解的和是 _____.
5、已知a>b,且c≠0,用“>”或“<”填空.
(1)2a________a+b
(2)_______
(3)c-a_______c-b
(4)-a|c|_______-b|c|
三、解答题(5小题,每小题10分,共计50分)
1、解不等式组,并把解集表示在数轴上.
2、(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;
(2)解不等式组:,并把它的解集在数轴上表示出来.
3、解不等式(组):
(1) ;
(2)
4、解不等式组,并把解集在数轴上表示出来.
5、解下列不等式组
(1)
(2).
---------参考答案-----------
一、单选题
1、A
【解析】
【分析】
根据不等式解的定义列出不等式,求出解集即可确定出a的范围.
【详解】
解:∵x=1是不等式(x﹣5)(ax﹣3a+2)≤0的解,且x=4不是这个不等式的解,
∴ 且 ,
即﹣4(﹣2a+2)≤0且﹣(a+2)>0,
解得:a<﹣2.
故选:A.
【点睛】
此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.
2、C
【解析】
【分析】
根据数轴可以得到不等式的解集.
【详解】
解:根据不等式的解集在数轴上的表示,向右画表示>或⩾,空心圆圈表示>,故该不等式的解集为x>2;
故选C
【点睛】
本题要考查的是在数轴上表示不等式的解集,运用数形结合的思想是本题的解题关键
3、D
【解析】
【分析】
根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.
【详解】
解:A、在不等式m>n的两边同时减去5,不等式仍然成立,即m﹣5>n﹣5,原变形错误,故此选项不符合题意;
B、在不等式m>n的两边同时除以5,不等式仍然成立,即,原变形错误,故此选项不符合题意;
C、在不等式m>n的两边同时乘以﹣5,不等式号方向改变,即﹣5m<﹣5n,原变形错误,故此选项不符合题意;
D、在不等式m>n的两边同时乘以﹣5,不等式号方向改变,即,原变形正确,故此选项符合题意.
故选:D.
【点睛】
本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.
4、C
【解析】
【分析】
代数式x-3与x+5的符号相反,分两种情况,解不等式组即可.
【详解】
解:根据题意得,
或,
解得:,
故选:C.
【点睛】
本题考查了解一元一次不等式组,是基础知识要熟练掌握.
5、C
【解析】
【分析】
由题意直接根据不等式的性质对各个选项进行分析判断即可.
【详解】
解:A.∵a>b,
∴a+c>b+c,故本选项不符合题意;
B.∵a>b,
∴a﹣b>b﹣b,
∴a﹣b>0,故本选项不符合题意;
C.∵a>b,
∴,故本选项符合题意;
D.∵a>b,c2≥0,
∴a•c2≥b•c2,故本选项不符合题意;
故选:C.
【点睛】
本题考查不等式的性质,能够正确利用不等式的性质是解题的关键,注意不等式两边同时乘除一个负数要改变不等号的方向.
6、C
【解析】
【分析】
根据不等式的基本性质逐项判断即可.
【详解】
解:A:∵m<n,
∴﹣2m>﹣2n,
∴不符合题意;
B:∵m<n,
∴,
∴不符合题意;
C:∵m<n,
∴﹣m>﹣n,
∴1﹣m>1﹣n,
∴符合题意;
D: m<n,当时,m2>n2,
∴不符合题意;
故选:C.
【点睛】
本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键.
7、B
【解析】
【分析】
表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和.
【详解】
解:,
解不等式①得:,
解不等式②得:
∴不等式组的解集为:,
∵由不等式组至少有3个整数解,
∴,即整数a=2,3,4,5,…,
∵,
∴
解得:,
∵方程的解为非负数,
∴,
∴
∴得到符合条件的整数a为3,4,5,6,7,之和为25.
故选B.
【点睛】
此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
8、D
【解析】
【分析】
利用不等式的性质,即可求解.
【详解】
解:A、若a<b,则3a<3b,故本选项错误,不符合题意;
B、若a>b,当c=0时,则ac2=bc2,故本选项错误,不符合题意;
C、若﹣2a>﹣2b,则a<b,故本选项错误,不符合题意;
D、若ac2<bc2,则a<b,故本选项正确,符合题意;
故选:D
【点睛】
本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.
9、D
【解析】
【分析】
根据绝对值的性质可得,求解即可.
【详解】
解:∵
∴,解得
故选D
【点睛】
此题考查了绝对值和不等式的性质,解题的关键是熟练掌握绝对值和不等式的有关性质.
10、B
【解析】
【分析】
根据数轴可得:再依次对选项进行判断.
【详解】
解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大,
即可得:,
A、由,得,故选项错误,不符合题意;
B、,根据不等式的性质可得:,故选项正确,符合题意;
C、,可得,故选项错误,不符合题意;
D、,故,故选项错误,不符合题意;
故选:B.
【点睛】
本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出.
二、填空题
1、
【解析】
【分析】
首先确定不等式的正整数解,则a的范围即可求得.
【详解】
解:关于x的不等式恰有3个正整数解,
则正整数解是:1,2,3.
则a的取值范围:.
故答案为:.
【点睛】
本题主要考查一元一次不等式组的整数解,根据a的取值范围正确确定a与3和4的关系是关键.
2、
【解析】
【分析】
根据不等式的性质可知,求解即可.
【详解】
解:∵不等式(m﹣3)x>m﹣3,两边同除以(m﹣3),得x<1,
∴,
解得:,
故答案为:.
【点睛】
本题考查了不等式的基本性质,熟知不等式两边同时乘或除一个负数,不等式的符号要改变,是解本题的关键.
3、a>6
【解析】
【分析】
根据不等式的基本性质,发现不等式的两边都乘(6﹣a)后,不等号的方向改变了,说明(6﹣a)是负数,从而得出答案.
【详解】
解:根据题意得:6﹣a<0,
∴a>6,
故答案为:a>6.
【点睛】
本题考查了不等式的基本性质,掌握①不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;②不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键.
4、3
【解析】
【分析】
根据解一元一次不等式基本步骤:移项、合并同类项、系数化为1得出不等式的解集,从而得出答案.
【详解】
解:4x﹣3≤2x+1
移项,得:4x﹣2x≤1+3,
合并同类项,得:2x≤4,
系数化为1,得:x≤2,
∴不等式的非负整数解为0、1、2,
∴不等式的非负整数解的和为0+1+2=3,
故答案为:3.
【点睛】
本题主要考查了一元一次不等式的整数解,解题的关键在于能够熟练掌握解一元一次不等式的方法.
5、 > > < <
【解析】
【分析】
(1)根据不等式的性质:不等式两边同时加上一个数,不等号不变号,即可得;
(2)根据不等式的性质:不等式两边同时除以一个正数,不等号不变号,即可得;
(3)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时加上一个数,不等号不变号,即可得;
(4)根据不等式的性质:不等式两边同时乘以一个负数,改变不等式的符号,再根据不等式两边同时乘以一个正数,不等号不变号,即可得.
【详解】
解:(1)∵,
∴,
即:;
(2)∵,,
∴;
(3)∵,
∴,
∴;
(4)∵,
∴,,
∴;
故答案为:(1)>;(2)>;(3)<;(4)<.
【点睛】
题目主要考查不等式的基本性质,熟练掌握不等式的性质并综合运用是解题关键.
三、解答题
1、,图见解析
【解析】
【分析】
分别解出两个不等式的解集,并表示在数轴上,再找到公共解集即可解题.
【详解】
解:
由①得
由②得
把不等式组的解集表示在数轴上,如图,
∴原不等式组的解为
【点睛】
本题考查解一元一次不等式组、在数轴上表示不等式组的解集,熟知:同大取大,同小取小,大小小大中间找,大大小小找不到的原则是解题的关键.
2、(1)﹣3x+5<﹣3y+5;(2)﹣1<x≤2,数轴上表示见解析.
【解析】
【分析】
(1)先在x>y的两边同乘以−3,变号,再在此基础上同加上5,不变号,即可得出结果;
(2)分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.
【详解】
解:(1)∵x>y,
∴不等式两边同时乘以−3得:(不等式的基本性质3)
−3x<−3y,
∴不等式两边同时加上5得:
5−3x<5−3y;
∴﹣3x+5<﹣3y+5;
(2),
∵解不等式①,得x≤2,
解不等式②,得x>﹣1,
∴原不等式组的解集为:﹣1<x≤2,
在数轴上表示不等式组的解集为:
【点睛】
主要考查了不等式的基本性质和解一元一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答此题的关键.
3、(1)x>1.5;(2)-1≤x<3
【解析】
【分析】
(1)根据移项、合并同类项、系数化为1的步骤可得x的范围;
(2)首先求出两个不等式的解集,然后取其公共部分即为不等式组的解集.
【详解】
(1)解:5x-2>3x+1,
移项得:5x-3x>1+2,
合并同类项得:2x>3,
系数化为1得:x>1.5;
(2)解: 解不等式2x+5≤3(x+2),得x≥-1,
解不等式2x-<1,得x<3,
∴不等式组的解集为-1≤x<3.
【点睛】
此题考查了解一元一次不等式,解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式,解一元一次不等式组的方法.
4、﹣2<x≤1,图见解析
【解析】
【分析】
分别解不等式组中的两个不等式,再取两个不等式的解集的公共部分,再在数轴上表示不等式组是解集即可.
【详解】
解:,
∵解不等式①得:x≤1,
解不等式②得:x>﹣2,
∴不等式组的解集为:﹣2<x≤1.
在数轴上表示不等式组的解集为:
【点睛】
本题考查的是一元一次不等式组的解法,在数轴上表示不等式组的解集,掌握解不等式组的方法是解本题的关键.
5、(1)-5≤x<-2;(2)
【解析】
【分析】
(1)按不等式的解法求出两个不等式的解集,在求其公共解,即可解答
(2)将原不等式变形得:,求出两个不等式的解集,在求其公共解,即可解答
【详解】
(1)解不等式,得
解不等式,得
故不等式组的解集为.
(2)原不等式可变为:
解①得:
解②得:
故原不等式组的解集为.
【点睛】
本题考查了一元一次不等式组解集的求法,熟记不等式组的解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)是解题关键.
相关试卷
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习,共18页。试卷主要包含了一个角的补角比这个角的余角大.,下列说法中正确的是,如图,直线AB等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试测试题,共26页。试卷主要包含了下列说法中,假命题的个数为,下列命题中是真命题的是,如图,直线AB等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试课时训练,共18页。试卷主要包含了下面说法正确的是,下列关于整式的说法错误的是,下列去括号正确的是.等内容,欢迎下载使用。