【历年真题】2022年上海市普陀区中考数学模拟专项测试 B卷(含答案解析)
展开
这是一份【历年真题】2022年上海市普陀区中考数学模拟专项测试 B卷(含答案解析),共23页。试卷主要包含了在平面直角坐标系xOy中,点A等内容,欢迎下载使用。
2022年上海市普陀区中考数学模拟专项测试 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若菱形的周长为8,高为2,则菱形的面积为( )A.2 B.4 C.8 D.162、深圳湾“春笋”大楼的顶部如图所示,则该几何体的主视图是( )A. B. C. D.3、已知4个数:,,,,其中正数的个数有( )A.1 B. C.3 D.44、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )A.轴 B.轴C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)5、如图,E为正方形ABCD边AB上一动点(不与A重合),AB=4,将△DAE绕着点A逆时针旋转90°得到△BAF,再将△DAE沿直线DE折叠得到△DME.下列结论:①连接AM,则AM∥FB;②连接FE,当F,E,M共线时,AE=4﹣4;③连接EF,EC,FC,若△FEC是等腰三角形,则AE=4﹣4,其中正确的个数有( )个.A.3 B.2 C.1 D.06、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:①;②;③抛物线与轴的另一个交点的坐标为;④方程有两个不相等的实数根.其中正确的个数为( )A.个 B.个 C.个 D.个7、已知一个圆锥的高为3,母线长为5,则圆锥的侧面积是( )A.10π B.12π C.16π D.20π8、如图是一个正方体展开图,将其围成一个正方体后,与“罩”字相对的是( ).A.勤 B.洗 C.手 D.戴9、若x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则4b﹣2a的值为( )A.﹣2 B.﹣1 C.1 D.210、多项式去括号,得( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图(1)是一个横断面为抛物线形状的拱桥,水面在l时,拱顶(拱桥洞的最高点)离水面3米,水面宽4米.如果按图(2)建立平面直角坐标系,那么抛物线的解析式是_____.2、如图,在△ABC中,AB=12,BC=15,D为BC上一点,且BD=BC,在AB边上取一点E,使以B,D,E为顶点的三角形与△ABC相似,则BE=_____.3、小华为学校“赓续百年初心,庆祝建党百年”活动布置会场,在—个不透明的口袋里有4根除颜色以外完全相同的缎带,其中2根为红色,2根为黄色,从口袋中随机摸出根缎带,则恰好摸出1根红色缎带1根黄色缎带的概率是______.4、如图,点、点是线段上的两个点,且,如果AB=5cm,CD=1cm,那么的长等于_______cm.5、计算:=___;三、解答题(5小题,每小题10分,共计50分)1、计算:2、综合与实践如图1,在综合实践课上,老师让学生用两个等腰直角三角形进行图形的旋转探究.在中,,,在中,,,点,分别在,边行,直角顶点重合在一起,将绕点逆时针旋转,设旋转角,其中.(1)当点落在上时,如图2:①请直接写出的度数为______(用含的式子表示);②若,,求的长;(2)如图3,连接,,并延长交于点,请判断与的位置关系,并加以证明;(3)如图4,当与是两个相等钝角时,其他条件不变,即在与中,,,,,则的度数为______(用含或的式子表示).3、如图,为的直径,弦于点,连接于点,且.(1)求的长;(2)当时,求的长和阴影部分的面积(结果保留根号和).4、如图,一次函数的图象与反比例函数的图象相交于A(1,3),B(3,n)两点,与两坐标轴分别相交于点P,Q,过点B作于点C,连接OA.(1)求一次函数和反比例函数的解析式;(2)求四边形ABCO的面积.5、解方程:. -参考答案-一、单选题1、B【分析】根据周长求出边长,利用菱形的面积公式即可求解.【详解】∵菱形的周长为8,∴边长=2,∴菱形的面积=2×2=4,故选:B.【点睛】此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.2、A【分析】根据简单几何体的三视图的意义,得出从正面看所得到的图形即可.【详解】解:从正面看深圳湾“春笋”大楼所得到的图形如下:故选:A.【点睛】本题考查简单几何体的三视图,理解视图的意义,掌握简单几何体三视图的画法是正确解答的关键.3、C【分析】化简后根据正数的定义判断即可.【详解】解:=1是正数,=2是正数,=1.5是正数,=-9是负数,故选C.【点睛】本题考查了有理数的乘方、相反数、绝对值的意义,以及正负数的意义,正确化简各数是解答本题的关键.4、C【分析】利用成轴对称的两个点的坐标的特征,即可解题.【详解】根据A点和B点的纵坐标相等,即可知它们的对称轴为.故选:C.【点睛】本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.5、A【分析】①正确,如图1中,连接AM,延长DE交BF于J,想办法证明BF⊥DJ,AM⊥DJ即可;②正确,如图2中,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,在MD上取一点J,使得ME=MJ,连接EJ,设AE=EM=MJ=x,则EJ=JD=x,构建方程即可解决问题;③正确,如图3中,连接EC,CF,当EF=CE时,设AE=AF=m,利用勾股定理构建方程即可解决问题.【详解】解:①如下图,连接AM,延长DE交BF于J,∵四边形ABCD是正方形,∴AB=AD,∠DAE=∠BAF=90°,由题意可得AE=AF,∴△BAF≌△DAE(SAS),∴∠ABF=∠ADE,∵∠ADE+∠AED=90°,∠AED=∠BEJ,∴∠BEJ+∠EBJ=90°,∴∠BJE=90°,∴DJ⊥BF,由翻折可知:EA=EM,DM=DA,∴DE垂直平分线段AM,∴BF∥AM,故①正确;②如下图,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,在MD上取一点J,使得ME=MJ,连接EJ,则由题意可得∠M=90°,∴∠MEJ=∠MJE=45°,∴∠JED=∠JDE=22.5°,∴EJ=JD,设AE=EM=MJ=x,则EJ=JD=x,则有x+x =4,∴x=4﹣4,∴AE=4﹣4,故②正确;③如下图,连接CF,当EF=CE时,设AE=AF=m,则在△BCE中,有2m²=4²+(4-m)2,∴m=4﹣4或-4﹣4 (舍弃),∴AE=4﹣4,故③正确;故选A.【点睛】本题考查旋转变换,翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.6、C【分析】根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①如图,开口向上,得,,得,抛物线与轴交于负半轴,即,,故①错误;②如图,抛物线与轴有两个交点,则;故②正确;③由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,故③正确;④如图所示,当时,,根的个数为与图象的交点个数,有两个交点,即有两个根,故④正确;综上所述,正确的结论有3个.故选:C.【点睛】主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.7、D【分析】首先利用勾股定理求得底面半径的长,然后根据扇形的面积公式即可求解.【详解】解:圆锥的底面半径是:,则底面周长是:,则圆锥的侧面积是:.故选:D.【点睛】本题主要考查三视图的知识和圆锥侧面面积的计算,解题的关键是由三视图得到立体图形,及记住圆锥的侧面面积公式.8、C【分析】本题要有一定的空间想象能力,可通过折纸或记口诀的方式找到“罩”的对面应该是“手”.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“罩”相对的面是“手”;故选:C.【点睛】可以通过折一个正方体再给它展开,通过结合立体图形与平面图形的转化,建立空间观念,解决此类问题.还可以直接记口诀找对面:"跳一跳找对面;找不到,拐个弯".9、D【分析】将x=1代入原方程即可求出答案.【详解】解:将x=1代入原方程可得:1+a-2b=0,∴a-2b=-1,∴原式=-2(a-2b)=2,故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程的解的概念,本题属于基础题型.10、D【分析】利用去括号法则变形即可得到结果.【详解】解:−2(x−2)=-2x+4,故选:D.【点睛】本题考查了去括号与添括号,掌握如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键.二、填空题1、【分析】设出抛物线方程y=ax2(a≠0)代入坐标(-2,-3)求得a.【详解】解:设出抛物线方程y=ax2(a≠0),由图象可知该图象经过(-2,-3)点,∴-3=4a,a=-,∴抛物线解析式为y=-x2.故答案为:.【点睛】本题主要考查二次函数的应用,解题的关键在于能够熟练掌握待定系数法求解二次函数解析式.2、4或【分析】以B,D,E为顶点的三角形与△ABC相似,则存在两种情况,即△BDE∽△BCA,也可能是△BDE∽△BAC,应分类讨论,求解.【详解】解:如图,DE//BC①当∠AED=∠C时,即DE∥AC则△BDE∽△BCA,∴ ∵BD=BC,∴∴ ②当∠BED=∠C时,△BED∽△BCA∴,即 ∴ 综上,BE=4或故答案为4或【点睛】此题考查了相似三角形的性质,会利用相似三角形求解一些简单的计算问题.3、【分析】画树状图共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,再由概率公式即可求解【详解】解:根据题意画出树状图,得:共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,所以摸出1根红色缎带1根黄色缎带的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率是解题的关键.4、2【分析】,可知,代值求解即可.【详解】解:,故答案为:2.【点睛】本题考查了线段的和与差.解题的关键在于正确的表示各线段之间的数量关系.5、【分析】根据二次根式的乘法法则:(a≥0,b≥0)计算.【详解】解:原式==,故答案为:.【点睛】本题考查了二次根式的乘除法,掌握二次根式的乘法法则,最后的化简是解题关键.三、解答题1、【分析】直接利用二次根式的性质化简进而得出答案.【详解】解:【点睛】此题主要考查了二次根式的乘除运算, 正确化简二次根式是解题关键.2、(1)①;②;(2),证明见解析;(3)【分析】(1)①由等腰直角三角形得,,故可求出;②过点M作于点,设,则,由,得是等腰直角三角形,得出,即可求出x的值,由勾股定理即可得出答案;(2)设与相交于点,由旋转得,根据SAS证明,由全等三角形的性质得,由得即,故可证;(3)设与相交于点,同(2)得,故,即可求.【详解】(1)①∵,都是等腰直角三角形,∴,,∵,∴,∴;②如图2,作于点,设,∵,,∴,∴,∴,在中,,∵,∴,∴,∴,∴,,∴;(2),证明如下:如图3,设与相交于点,由旋转可知:,∵,,∴,∴,∵,∴即,∴,∴;(3)如图4,设与相交于点,同(2)得,∴,.【点睛】本题考查等腰三角形的判定与性质,全等三角形的判定与性质,掌握相关知识点间的应用是解题的关键.3、(1)2;(2)的长为,阴影部分的面积为【分析】(1)根据垂径定理可得、,从而得到为的中位线,,即可求解;(2)连接,求得,利用含直角三角形的性质求得半径,即可求解.【详解】解:(1)∵,∴,∵,∴为的中位线∴,∵,∴,∴;(2)连接,如下图:∵,,∴,∴,在中,∵,,,∴,,∴的长,阴影部分的面积.【点睛】此题考查了圆的垂径定理,弦、弧、圆心角之间的关键,三角形中位线的性质,等腰三角形的性质,含直角三角形的性质,弧长以及扇形面积的计算,解题的关键是掌握并灵活运用相关性质求解.4、(1)一次函数的关系式为y=-x+4,反比例函数的关系式为y=;(2)四边形ABCO的面积为.【分析】(1)将点A坐标代入,确定反比例函数的关系式,进而确定点B坐标,把点A、B的坐标代入求出一次函数的关系式;(2)将四边形ABCO的面积转化为S△AOM+S梯形AMCB,利用坐标及面积的计算公式可求出结果.【详解】解:(1)A(1,3)代入y=得,m=3,∴反比例函数的关系式为y=;把B(3,n)代入y=得,n=1,∴点B(3,1);把点A(1,3),B(3,1)代入一次函数y=kx+b得,,解得:,∴一次函数的关系式为:y=-x+4;答:一次函数的关系式为y=-x+4,反比例函数的关系式为y=;(2)如图,过点B作BM⊥OP,垂足为M,由题意可知,OM=1,AM=3,OC=3,MC=OC-OM=3-1=2,∴S四边形ABCO=S△AOM+S梯形AMCB,=×1×3+×(1+3)×2=.【点睛】本题考查了一次函数、反比例函数的图象和性质,把点的坐标代入是常用的方法,将坐标与线段的长的相互转化是计算面积的关键.5、【分析】先去分母,去括号,再移项、合并同类项,最后系数化为1即可得答案.【详解】去分母得:,去括号得:,移项得:,合并同类项得:,系数化1得:.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.
相关试卷
这是一份【历年真题】2022年上海市普陀区中考数学历年真题汇总 卷(Ⅲ)(含答案详解),共22页。试卷主要包含了下列四个实数中,无理数是,多项式去括号,得等内容,欢迎下载使用。
这是一份【历年真题】最新中考数学模拟专项测试 B卷(含答案详解),共19页。试卷主要包含了在中,,,那么的值等于,下列说法中正确的个数是等内容,欢迎下载使用。
这是一份【历年真题】中考数学模拟专项测试 B卷(含答案及详解),共20页。试卷主要包含了不等式+1<的负整数解有,下列计算,下列变形中,正确的是等内容,欢迎下载使用。