【难点解析】2022年北京市大兴区中考数学模拟专项测试 B卷(精选)
展开2022年北京市大兴区中考数学模拟专项测试 B卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )m.
A. B. C. D.200
2、一列火车匀速行驶,经过一条长400米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的长为( )
A. B.133 C.200 D.400
3、如图,已知双曲线 经过矩形 边 的中点 且交 于 ,四边形 的面积为 2,则
A.1 B.2 C.4 D.8
4、下列关于x的方程中,一定是一元二次方程的是( )
A.ax2﹣bx+c=0 B.2ax(x﹣1)=2ax2+x﹣5
C.(a2+1)x2﹣x+6=0 D.(a+1)x2﹣x+a=0
5、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知S△AFE=1,则S△ABD的值是( )
A.9 B.10 C.12 D.14
6、点P(4,﹣3)关于原点对称的点的坐标是( )
A.(3,﹣4) B.(﹣4,3) C.(﹣4,﹣3) D.(4,3)
7、将抛物线y=2x2向下平移3个单位后的新抛物线解析式为( )
A.y=2(x﹣3)2 B.y=2(x+3)2 C.y=2x2﹣3 D.y=2x2+3
8、将,2,,3按如图的方式排列,规定表示第m排左起第n个数,则与表示的两个数之积是( )
A. B.4 C. D.6
9、为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》、《新中国史》、《改革开放史》、《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为( )
A. B. C. D.1
10、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:①;②;③抛物线与轴的另一个交点的坐标为;④方程有两个不相等的实数根.其中正确的个数为( )
A.个 B.个 C.个 D.个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在平面直角坐标系中,二次函数 y=x2﹣2x+c 的图象与 x 轴交于 A、C 两点,与 y轴交于点 B(0,﹣3),若 P 是 x 轴上一动点,点 D(0,1)在 y 轴上,连接 PD,则 C 点的坐标是_____,PD+PC 的最小值是______.
2、桌子上放有6枚正面朝上的硬币,每次翻转其中的4枚,至少翻转_________次能使所有硬币都反面朝上.
3、如图,AB∥CD∥EF,如果AC=2,CE=3,BD=1.5,那么BF的长是_____.
4、已知,,则代数式的值为____________.
5、一次函数y=﹣x+1的图象与反比例函数y=的图象交点的纵坐标为2,当﹣3<x<﹣1时,反比例函数y=中y的取值范围是 _____.
三、解答题(5小题,每小题10分,共计50分)
1、已知关于x的方程x2﹣+k=0有实数根,求k的取值范围.
2、利用幂的运算性质计算:﹣×÷(结果用幂的形式表示).
3、如图,点E是矩形ABCD的边BA延长线上一点,连接ED,EC,EC交AD于点G,作CF∥ED交AB于点F,DC=DE.
(1)求证:四边形CDEF是菱形;
(2)若BC=3,CD=5,求AG的长.
4、在△ABC中,∠BAC=90°,P是线段AC上一动点,CQ⊥BP于点Q,D是线段BQ上一点,E是射线CQ上一点,且满足,连接AE,DE.
(1)如图1,当AB=AC时,用等式表示线段DE与AE之间的数量关系,并证明;
(2)如图2,当AC=2AB=6时,用等式表示线段DE与AE之间的数量关系,并证明;
(3)在(2)的条件下,若,AE⊥CQ,直接写出A,D两点之间的距离.
5、如图,已知点A、C分别是∠B两边上的定点.
(1)求作:线段CD,使得DC∥AB,且,点D在点C的右侧;(要求:尺规作图,不写作法,但要保留作图痕迹.)
(2)M是BC的中点,求证:点A、M、D三点在同一直线上.
-参考答案-
一、单选题
1、B
【分析】
连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可.
【详解】
解:连接BD,如下图所示:
与所对的弧都是.
.
所对的弦为直径AD,
.
又,
为等腰直角三角形,
在中,,
由勾股定理可得:.
故选:B.
【点睛】
本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.
2、C
【分析】
设火车的车长是x米,根据经过一条长400m的隧道需要30秒的时间,可求火车速度,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,可求火车上速度,根据车速相同可列方程求解即可.
【详解】
解:设火车的长度是x米,根据题意得出:=,
解得:x=200,
答:火车的长为200米;
故选择C.
【点睛】
本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.
3、B
【分析】
利用反比例函数图象上点的坐标,设,则根据F点为AB的中点得到.然后根据反比例函数系数k的几何意义,结合,即可列出,解出k即可.
【详解】
解:设,
∵点F为AB的中点,
∴.
∵,
∴,即,
解得:.
故选B.
【点睛】
本题考查反比例函数的k的几何意义以及反比例函数上的点的坐标特点、矩形的性质,掌握比例系数k的几何意义是在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答本题的关键.
4、C
【分析】
根据一元二次方程的定义(含有一个未知数,并且含有未知数的项的最高次数是2的整式方程叫一元二次方程)进行判断即可.
【详解】
解:A.当a=0时,ax2+bx+c=0不是一元二次方程,故此选项不符合题意;
B.2ax(x-1)=2ax2+x-5整理后化为:-2ax-x+5=0,不是一元二次方程,故此选项不符合题意;
C.(a2+1)x2-x+6=0,是关于x的一元二次方程,故此选项符合题意;
D.当a=-1时,(a+1)x2-x+a=0不是一元二次方程,故此选项不符合题意.
故选:C.
【点睛】
本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).
5、C
【分析】
过点F作MN⊥AD于点M,交BC于点N,证明△AFE∽△CFB,可证得,得MN=4MF,再根据三角形面积公式可得结论.
【详解】
解:过点F作MN⊥AD于点M,交BC于点N,连接BD,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC
∴△AFE∽△CFB
∴
∵DE=2AE
∴AD=3AE=BC
∴
∴,即
又
∴
∴
故选:C
【点睛】
本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.
6、B
【分析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数,进而得出答案.
【详解】
解:点P(4,-3)关于原点对称的点的坐标是(-4,3),
故选:B.
【点睛】
此题主要考查了关于原点对称点的性质,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.
7、C
【分析】
根据“上加下减”的原则进行解答即可.
【详解】
解:将抛物线y=2x2向下平移3个单位后的新抛物线解析式为:y=2x2-3.
故选:C.
【点睛】
本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.
8、A
【分析】
根据数的排列方法可知,第一排1个数,第二排2个数,第三排3个数,第四排4个数,…第(m-1)排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m排第m个数后再计算
【详解】
解:(5,4)表示第5排从左向右第4个数,由图可知,(5,4)所表示的数是2;是第21排第7个数,则前20排有个数,则是第个数,
,2,,3四个数循环出现,
表示的数是
与表示的两个数之积是
故选A
【点睛】
本题考查了数字的变化规律,判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.
9、A
【分析】
直接根据概率公式求解即可.
【详解】
解:由题意得,他恰好选到《新中国史》这本书的概率为,
故选:A.
【点睛】
本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
10、C
【分析】
根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:①如图,开口向上,得,
,得,
抛物线与轴交于负半轴,即,
,
故①错误;
②如图,抛物线与轴有两个交点,则;
故②正确;
③由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,
故③正确;
④如图所示,当时,,
根的个数为与图象的交点个数,
有两个交点,即有两个根,
故④正确;
综上所述,正确的结论有3个.
故选:C.
【点睛】
主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
二、填空题
1、(3,0) 4
【分析】
过点P作PJ⊥BC于J,过点D作DH⊥BC于H.根据,求出的最小值即可解决问题.
【详解】
解:过点P作PJ⊥BC于J,过点D作DH⊥BC于H.
∵二次函数y=x2﹣2x+c的图象与y轴交于点B(0,﹣3),
∴c=﹣3,
∴二次函数的解析式为y=x2﹣2x﹣3,令y=0,x2﹣2x﹣3=0,
解得x=﹣1或3,
∴A(﹣1,0),C(3,0),
∴OB=OC=3,
∵∠BOC=90°,
∴∠OBC=∠OCB=45°,
∵D(0,1),
∴OD=1,BD=1-(-3)=4,
∵DH⊥BC,
∴∠DHB=90°,
设,则,
∵,
∴,
∴,
∴,
∵PJ⊥CB,
∴,
∵∠PCJ=45°,
∴∠CPJ=90°-∠PCJ=45°,
∴PJ=JC,
根据勾股定理
∴,
∴,
∵,
∴,
∴PD+PJ的最小值为,
∴的最小值为4.
故答案为: (3,0),4.
【点睛】
本题考查了二次函数的相关性质,以及等腰直角三角形的判定和性质,勾股定理,垂线段最短等知识,解题的关键是学会用转化的思想思考问题.
2、3
【分析】
用“”表示正面朝上,用“”表示正面朝下,找出最少翻转次数能使杯口全部朝下的情况即可得答案
【详解】
用“”表示正面朝上,用“”表示正面朝下,
开始时
第一次
第二次
第三次
至少翻转3次能使所有硬币都反面朝上.
故答案为:3
【点睛】
本题考查了正负数的应用,根据朝上和朝下的两种状态对应正负号,尝试最少的次数满足题意是解题的关键.
3、
【分析】
根据平行线分线段成比例定理解答即可.
【详解】
解:∵AB∥CD∥EF,AC=2,CE=3,BD=1.5,
∴,即,
解得:BF=,
故答案为:.
【点睛】
本题主要考查了平行线分线段成比例,熟知平行线分线段成比例定理是解题的关键.
4、-16.5
【分析】
先把待求的式子变形,再整体代值即可得出结论.
【详解】
解:
,
∵,,
∴原式=3×(-5)-×(-3)=-15-1.5=-16.5.
故答案为:-16.5.
【点睛】
本题考查了整式的加减-化简求值,利用整体代入的思想是解此题的关键.
5、<y<2
【分析】
把一个交点的纵坐标是2代入y=-x+1求出横坐标为-1,把(-1,2)代入y=求出k,令-3<x<-1,求出y=的取值范围,即可求出y的取值范围.
【详解】
解:令y=2,则2=-x+1,
∴x=-1,
把(-1,2)代入y=,
解得:k=-2,
∴反比例函数为y=,
当x=-3时,代入y=得y=,
∴x=-3时反比例函数的值为:,
当x=-1时,代入y=得y=2,
又知反比例函数y=在-3<x<-1时,y随x的增大而增大,
即当-3<x<-1时反比例函数y的取值范围为:<y<2.
【点睛】
本题考查了反比例函数与一次函数的交点及正比例函数与反比例函数的性质,难度不大,关键是掌握用待定系数法求解函数的解析式.
三、解答题
1、
【分析】
根据根的判别式的意义得到△,还有被开方式,然后解不等式组即可.
【详解】
解:根据题意得△且,
解得:.
【点睛】
本题考查了根的判别式:一元二次方程的根与△有如下关系:当△时,方程有两个不相等的两个实数根;当△时,方程有两个相等的两个实数根;当△时,方程无实数根,本题关键还应考虑被开方式非负.
2、
【分析】
直接利用分指数幂的以及同底数幂的乘法和同底数幂的除法运算法则分别化简得出答案.
【详解】
解:,
,
,
,
.
【点睛】
题目主要考查分数指数幂的运算及同底数幂的乘法和同底数幂的除法,熟练掌握各运算法则是解题关键.
3、
(1)见解析
(2)
【分析】
(1)根据矩形性质先证明四边形CDEF是平行四边形,再根据有一组邻边相等的平行四边形是菱形即可解决问题;
(2)连接GF,根据菱形的性质证明△CDG≌△CFG,然后根据勾股定理即可解决问题.
【小题1】
解:证明:∵四边形ABCD是矩形,
∴AB∥CD,AB=CD,
∵CF∥ED,
∴四边形CDEF是平行四边形,
∵DC=DE.
∴四边形CDEF是菱形;
【小题2】
如图,连接GF,
∵四边形CDEF是菱形,
∴CF=CD=5,
∵BC=3,
∴BF=,
∴AF=AB-BF=5-4=1,
在△CDG和△CFG中,
,
∴△CDG≌△CFG(SAS),
∴FG=GD,
∴FG=GD=AD-AG=3-AG,
在Rt△FGA中,根据勾股定理,得
FG2=AF2+AG2,
∴(3-AG)2=12+AG2,
解得AG=.
【点睛】
本题考查了矩形的性质,菱形的判定与性质,全等三角形的判定与性质,勾股定理,解决本题的关键是掌握菱形的判定与性质.
4、
(1),理由见解析
(2),理由见解析
(3)
【分析】
(1)连接AD.根据,可得,从而得到,再由,可得,从而得到,进而得到,即可求解;
(2)连接AD.先证明,可得到,从而得到,再由勾股定理,即可求解;
(3)根据题意可先证明四边形ADQE是矩形,可得到AD⊥BP,再由,可得AP=4,再由勾股定理可得,然后根据三角形的面积,即可求解.
(1)
解:
理由:如图,连接AD.
∵,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴,
∴,即,
∴,
在Rt△DAE中,
∵,
∴;
(2)
解:,
理由:如图,连接AD.
∵,
∴,
∵,
∴,
∴,
∵,
∴,
∴,
∴,即,
在Rt△DAE中,∵,
∴;
(3)
解: 由(2)得:∠DAE=90°,
∵AE⊥CQ,BP⊥CQ,
∴∠DQE=∠AEQ=90°,PQ∥AE,
∴四边形ADQE是矩形,
∴∠ADP=90°,即AD⊥BP,
∵,AC=6,
∴AP=4,
∵AC=2AB=6,
∴AB=3,
∵∠BAC=90°,
∴ ,
∵ ,
∴ .
【点睛】
本题主要考查了相似三角形、全等三角形、矩形的判定和性质,勾股定理等知识,熟练掌握相似三角形、全等三角形、矩形的判定和性质,勾股定理等知识是解题的关键.
5、
(1)见解析
(2)见解析
【分析】
(1)根据题意作,则,在射线上截取,则点即为所求;
(2)连接,设与交于点,证明,可得,则重合,即过点,即可证明点A、M、D三点在同一直线上
(1)
如图所示,点即为所求
(2)
如图,连接,设与交于点,
,
又
又是的中点
重合
过点,
即点A、M、D三点在同一直线上
【点睛】
本题考查了作一个角等于已知角,作线段等于已知线段,三角形全等的性质与判定,平行线的判定,掌握基本作图是解题的关键.
【难点解析】2022年中考数学模拟专项测试 B卷(精选): 这是一份【难点解析】2022年中考数学模拟专项测试 B卷(精选),共23页。试卷主要包含了在下列运算中,正确的是,下列说法正确的是,如图所示,,,,,则等于等内容,欢迎下载使用。
【难点解析】2022年内蒙古赤峰市中考数学模拟专项测试 B卷(精选): 这是一份【难点解析】2022年内蒙古赤峰市中考数学模拟专项测试 B卷(精选),共23页。试卷主要包含了已知线段AB,的相反数是,定义一种新运算,下列说法正确的有等内容,欢迎下载使用。
【难点解析】2022年北京市顺义区中考数学模拟专项测试 B卷(含答案及解析): 这是一份【难点解析】2022年北京市顺义区中考数学模拟专项测试 B卷(含答案及解析),共25页。试卷主要包含了二次函数y=等内容,欢迎下载使用。