【历年真题】最新中考数学模拟测评 卷(Ⅰ)(精选)
展开最新中考数学模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、平面直角坐标系中,已知点,,其中,则下列函数的图象可能同时经过P,Q两点的是( ).
A. B.
C. D.
2、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )
A. B. C. D.
3、一把直尺与一块直角三角板按下图方式摆放,若,则( )
A.52° B.53° C.54° D.63°
4、某物体的三视图如图所示,那么该物体形状可能是( )
A.圆柱 B.球 C.正方体 D.长方体
5、在实数,,0.1010010001…,,中无理数有( )
A.4个 B.3个 C.2个 D.1个
6、如图,点是以点为圆心,为直径的半圆上的动点(点不与点,重合),.设弦的长为,的面积为,则下列图象中,能表示与的函数关系的图象大致是( )
A. B. C. D.
7、如图所示,动点从第一个数的位置出发,每次跳动一个单位长度,第一次跳动一个单位长度到达数的位置,第二次跳动一个单位长度到达数的位置,第三次跳动一个单位长度到达数的位置,第四次跳动一个单位长度到达数的位置,……,依此规律跳动下去,点从跳动次到达的位置,点从跳动次到达的位置,……,点、、……在一条直线上,则点从跳动( )次可到达的位置.
A. B. C. D.
8、如图,是的外接圆,,则的度数是( )
A. B. C. D.
9、等腰三角形的一个内角是,则它的一个底角的度数是( )
A. B.
C.或 D.或
10、如图,在△ABC和△DEF中,AC∥DF,AC=DF,点A、D、B、E在一条直线上,下列条件不能判定△ABC≌△DEF的是( ).
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在不等式组的解集中,最大的整数解是______.
2、直接写出计算结果:
(1)=____;
(2)____;
(3)=____;
(4)102×98=____.
3、使等式成立的条件时,则的取值范围为 ___.
4、单项式的系数是______.
5、如图,在▱ABCD中,AB=8,AD=6,E为AD延长线上一点,且DE=4,连接BE,BE交CD于点F,则CF=_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在内部作射线和的平分线.
(1)请补全图形;
(2)若,,求的度数;
(3)若是的角平分线,,求的度数.
2、一位同学在阅读课外书的时候,学到了一种速算方法,也让我们一起来看看吧!,他发现这样的数对一共有50对,且每一对数和都101,所以原式;同样地,
+…+),这样的数对一共有25对,且每一对数和都是102,所以原式;
(1)请仔细观察以上算式的特点及运算规律,请你运用你的发现看看下列式子哪些具有上述特点,能运用上述规律来运算,并把这样式子的结果算出来:
①;
②;
③;
(2)在上面的①式中,请你通过增加或减少和中最后面奇数的个数,探寻本题计算规律,请用一个含字母n的式子表示你的发现;
(3)另外,该同学还有一个有趣发现:,,,,…,以此类推,你能写出第50个式子的结果并写出等式左边第一个数吗?说出你的理由.
3、如图,.
(1)尺规作图:作的角平分线,交于点;(不写作法,保留作图痕迹)
(2)求证:是等腰三角形.
4、已知点,则点到轴的距离为______,到轴的距离为______.
5、(数学阅读)
图1是由若干个小圆圈推成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共推了n层.
将图1倒置后与原图1排成图2的形状,这样图2中每一行的圆圈数都是.
我们可以利用“倒序相加法”算出图1中所有圆圈的个数为:.
(问题解决)
(1)按照图1的规则摆放到第12层时,求共用了多少个圆圈;
(2)按照图1的规则摆放到第19层,每个圆圈都按图3的方式填上一串连续的正整数:1,2,3,4,……,则第19层从左边数第二个圆圈中的数字是______.
-参考答案-
一、单选题
1、B
【分析】
先判断再结合一次函数,二次函数的增减性逐一判断即可.
【详解】
解:
同理:
当时,随的增大而减小,
由可得随的增大而增大,故A不符合题意;
的对称轴为: 图象开口向下,
当时,随的增大而减小,故B符合题意;
由可得随的增大而增大,故C不符合题意;
的对称轴为: 图象开口向上,
时,随的增大而增大,故D不符合题意;
故选B
【点睛】
本题考查的是一次函数与二次函数的图象与性质,掌握“一次函数与二次函数的增减性”是解本题的关键.
2、C
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:48500000科学记数法表示为:48500000=.
故答案为:.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、B
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,,
∴,
∴,
故选B.
【点睛】
本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.
4、A
【分析】
根据主视图和左视图都是矩形,俯视图是圆,可以想象出只有圆柱符合这样的条件,因此物体的形状是圆柱.
【详解】
解:根据三视图的知识,主视图以及左视图都为矩形,俯视图是一个圆,
则该几何体是圆柱.
故选:A.
【点睛】
本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.熟悉简单的立体图形的三视图是解本题的关键.
5、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:,是整数,属于有理数;
是分数,属于有理数;
无理数有0.1010010001…,,,共3个.
故选:B.
【点睛】
此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
6、B
【分析】
由AB为圆的直径,得到∠C=90°,在Rt△ABC中,由勾股定理得到,进而列出△ABC面积的表达式即可求解.
【详解】
解:∵AB为圆的直径,
∴∠C=90°,
,,由勾股定理可知:
∴,
∴
此函数不是二次函数,也不是一次函数,
排除选项A和选项C,
为定值,当时,面积最大,
此时,
即时,最大,故排除,选.
故选:.
【点睛】
本题考查了动点问题的函数图象,根据题意列出函数表达式是解决问题的关键.
7、B
【分析】
由题意可得:跳动个单位长度到 从到再跳动个单位长度,归纳可得:从上一个点跳动到下一个点跳动的单位长度是连续的三个正整数的和,从而可得答案.
【详解】
解:由题意可得:跳动个单位长度到
从到再跳动个单位长度,
归纳可得:
结合
所以点从跳动到达跳动了:
个单位长度.
故选B
【点睛】
本题考查的是数字规律的探究,有理数的加法运算,掌握“从具体到一般的探究方法及运用发现的规律解题”是关键.
8、C
【分析】
在等腰三角形OCB中,求得两个底角∠OBC、∠OCB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.
【详解】
解:在中,,
;
,,
;
又,
,
故选:.
【点睛】
本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.
9、A
【分析】
由题意知, 100°的内角为等腰三角形的顶角,进而可求底角.
【详解】
解:∵在一个内角是 100°的等腰三角形中,该内角必为顶角
∴底角的度数为
故选A.
【点睛】
本题考查了等腰三角形的性质,三角形的内角和定理.解题的关键在于明确该三角形为钝角等腰三角形.
10、D
【分析】
根据各个选项中的条件和全等三角形的判定可以解答本题.
【详解】
解:∵AC∥DF,
∴∠A=∠EDF,
∵AC=DF,∠A=∠EDF,添加∠C=∠F,根据ASA可以证明△ABC≌△DEF,故选项A不符合题意;
∵AC=DF,∠A=∠EDF,添加∠ABC=∠DEF,根据AAS可以证明△ABC≌△DEF,故选项B不符合题意;
∵AC=DF,∠A=∠EDF,添加AB=DE,根据SAS可以证明△ABC≌△DEF,故选项C不符合题意;
∵AC=DF,∠A=∠EDF,添加BC=EF,不可以证明△ABC≌△DEF,故选项D符合题意;
故选:D.
【点睛】
本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.
二、填空题
1、4
【分析】
先求出不等式的解集,再求出不等式组的解集,找出不等式组的最大整数解即可.
【详解】
解: ,
解不等式①得,x≥2,
解不等式②得, ,
∴不等式组的解集为,
∴不等式组的最大整数解为4.
故答案为:4.
【点睛】
本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.
2、-12 -1 ax 9996
【分析】
(1)先乘方,再加减即可;
(2)逆用积的乘方法则进行计算;
(3)运用幂的乘方法则,同底数幂的乘除法法则以及积的乘方法则计算即可;
(4)运用平方差公式计算即可.
【详解】
解:(1)
=﹣1+(﹣10)﹣1
=﹣1﹣10﹣1
=﹣12.
故答案为:﹣12.
(2)
=()101×()101
()101
=﹣()101
=﹣1.
故答案为:﹣1.
(3)
=a2x﹣2•ax+1÷a2x﹣1
=a2x﹣2+x+1﹣(2x﹣1)
=ax.
故答案为:ax.
(4)102×98
=(100+2)×(100﹣2)
=100²﹣2²
=9996.
故答案为:9996.
【点睛】
本题考查了实数的运算,平方差公式,同底数幂的乘除法,幂的乘方与积的乘方,零指数幂,负整数指数幂,熟练掌握各运算法则是解题关键.
3、
【分析】
由二次根式有意义的条件可得再解不等式组即可得到答案.
【详解】
解:等式成立,
由①得:
由②得:
所以则的取值范围为
故答案为:
【点睛】
本题考查的是商的算术平方根的运算法则与二次根式有意义的条件,掌握“”是解本题的关键.
4、##
【分析】
单项式中的数字因数是单项式的系数,根据概念直接作答即可.
【详解】
解:单项式的系数是,
故答案为:
【点睛】
本题考查的是单项式的系数的概念,掌握“单项式的系数的概念求解单项式的系数”是解本题的关键.
5、
【分析】
根据平行四边形的性质可知,即可证明,推出,由此即可求出CF的长.
【详解】
∵四边形ABCD是平行四边形,
∴,即,
∴,,
∴,
∴.
∵,
∴.
∵
∴,
∴.
故答案为:.
【点睛】
本题考查平行四边形的性质,相似三角形的判定和性质.掌握相似三角形的判定方法是解答本题的关键.
三、解答题
1、
(1)图见解析
(2)
(3)
【分析】
(1)先根据射线的画法作射线,再利用量角器画的平分线即可得;
(2)先根据角的和差可得,再根据角平分线的定义即可得;
(3)先根据角平分线的定义可得,,再根据可得的度数,由此即可得.
(1)
解:补全图形如下:
(2)
解:,,
,
是的平分线,
;
(3)
解:是的角平分线,
,
是的平分线,
,
,
,
解得,
.
【点睛】
本题考查了画射线和角平分线、与角平分线有关的计算,熟练掌握角平分线的运算是解题关键.
2、
(1)①;②;③
(2)
(3)第50个式子为: 等式的左边第1个数为:
【分析】
(1)①根据阅读部分提供的方法可得:一共有个数,分成50组,每组的和为200,从而可得答案;②根据阅读部分提供的方法可得:一共有个数,分成25组,每组的和为202,从而可得答案;③由可得前面两个数的和等于后一个数,再计算即可.
(2)分两种情况讨论:当为偶数时,当为奇数时,再利用从具体到一般的探究方法矩形探究即可;
(3)由,,, ,可发现左边第一个数有: 归纳可得:第行第一个数为: 右边为 后续的奇数为: 再应用规律,从而可得答案.
(1)
解:①
②
③
(2)
解:
当为偶数时,
当为奇数时,
综上:(为正整数)
(3)
解: ,,,,
可发现左边第一个数有:
归纳可得:第行第一个数为: 右边为
后续的奇数为:
所以第50行第一个数为:
后续奇数为:
所以第50个式子为:
等式的左边第1个数为:
【点睛】
本题考查的是有理数的加法与乘法的运算,乘方运算,数字运算规律的探究,列代数式,掌握“从具体到一般的探究方法得到规律并运用规律解决问题”是解本题的关键.
3、
(1)作图见解析
(2)证明见解析
【分析】
(1)按照角平分线的作法作图即可.
(2)由(1)问知,由知,即可得到,再由等角对等边可知,即可证得为等腰三角形.
(1)
如图所示,以A为圆心,在AB、AD线段上作点E、F,使得AE=AF,再以A、F为圆心,大于长度为半径画弧,在∠DAB中有交点G,连接AG,延长AG交BC于点P.
(2)
∵
∴
由∵是的角平分线
∴
∴
∴
∴为等腰三角形
【点睛】
本题考查了作角平分线,等腰三角形的证明,作∠OAB的角平分线步骤如下,在和上,分别截取、,使;分别以D、E为圆心,大于长为半径画弧,在内,两弧交于点C;作射线,则就是所求作的角平分线;由等角对等边即可证得三角形为等腰三角形.
4、2 3
【分析】
点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值,据此即可得答案.
【详解】
∵点的坐标为,
∴点到轴的距离为,到轴的距离为.
故答案为:2;3
【点睛】
本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.
5、
(1)78个圆圈
(2)173
【分析】
(1)将代入公式求解即可得;
(2)先计算当时的值,然后根据题意,第19层从左边数第二个圆圈中的数字即可得出.
(1)
解:图1中所有圆圈的个数为:,
当时,
,
答:摆放到第12层时,求共用了78个圆圈;
(2)
先计算当时,
,
第19层从左边数第二个圆圈中的数字为:,
故答案为:173.
【点睛】
题目主要考查有理数的加法及找规律求代数式的值,理解题意,运用代数式求值是解题关键.
【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选): 这是一份【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选),共21页。试卷主要包含了下列各式,下列说法正确的是.,不等式+1<的负整数解有,计算12a2b4•÷的结果等于,分式方程有增根,则m为等内容,欢迎下载使用。
【历年真题】2022年最新中考数学模拟真题练习 卷(Ⅱ)(精选): 这是一份【历年真题】2022年最新中考数学模拟真题练习 卷(Ⅱ)(精选),共26页。
【历年真题】最新中考数学模拟测评 卷(Ⅰ)(含答案解析): 这是一份【历年真题】最新中考数学模拟测评 卷(Ⅰ)(含答案解析),共22页。试卷主要包含了观察下列图形,点P等内容,欢迎下载使用。