【难点解析】2022年北京市海淀区中考数学模拟定向训练 B卷(含答案及详解)
展开
这是一份【难点解析】2022年北京市海淀区中考数学模拟定向训练 B卷(含答案及详解),共24页。试卷主要包含了若,,且a,b同号,则的值为等内容,欢迎下载使用。
2022年北京市海淀区中考数学模拟定向训练 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一种药品经过两次降价,药价从每盒60元下调至48.6元,设平均每次降价的百分率为x,根据题意所列方程正确的是( )A. B. C. D.2、下列计算中正确的是( )A. B. C. D.3、下列各组数据中,能作为直角三角形的三边长的是( )A.,, B.4,9,11 C.6,15,17 D.7,24,254、若,,且a,b同号,则的值为( )A.4 B.-4 C.2或-2 D.4或-45、为迎接建党一百周年,某班50名同学进行了党史知识竞赛,测试成绩统计如下表,其中有两个数据被遮盖.下列关于成绩的统计量中,与被遮盖的数据无关的是( )成绩/分919293949596979899100人数■■1235681012A.平均数,方差 B.中位数,方差C.中位数,众数 D.平均数,众数6、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )A. B.四边形EFGH是菱形C. D.7、如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第个图案中有2023个白色纸片,则的值为( )A.672 B.673 C.674 D.6758、在2,1,0,-1这四个数中,比0小的数是( )A.2 B.0 C.1 D.-19、育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据:抽查小麦粒数100300800100020003000发芽粒数962877709581923a则a的值最有可能是( )A.2700 B.2780 C.2880 D.294010、0.1234567891011……是一个无理数,其小数部分是由1开始依次写下递增的正整数得到的,则该无理数小数点右边的第2022位数字是( )A.0 B.1 C.2 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,四边形中,,,,在、上分别找一点M、N,当周长最小时,的度数是______________.2、如图,直线AB与CD相交于O,OE⊥AB,OF⊥CD,∠AOC=28°24′,则∠COE=______,图中与∠COE互补的角有______.3、如果关于x的方程x2﹣x+2a=4有一个根是x=﹣1,那么a=___.4、如图,∠AOB=62°,OC平分∠AOB,∠COD=90°,则∠AOD=_____度.5、在一个暗箱里放有x个大小相同、质地均匀的白球,为了估计白球的个数,再放入5个和白球大小、质地均相同,只有颜色不同的黄球,将球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回暗箱中,通过大量重复试验,发现摸到黄球的频率稳定在0.2,推算x的值大约是______.三、解答题(5小题,每小题10分,共计50分)1、解方程:(1);(2).2、已知,,点在边上,点是边上一动点,.以线段为边在上方作等边,连接、,再以线段为边作等边(点、在的同侧),作于点.(1)如图1,.①依题意补全图形;②求的度数;(2)如图2,当点在射线上运动时,用等式表示线段与之间的数量关系,并证明.3、小明在做作业时发现练习册上一道解方程的题目被墨水污染了,,是被污染的数,他很着急,翻开书后的答案找到这道题的解为:,你能帮他补上“”的数吗?写出你的解题过程.4、解下列不等式(组),并把解集在数轴上表示出来;(1);(2);(3);(4).5、如图,的长方形网格中,网格线的交点叫做格点.点A,B,C都是格点.请按要求解答下列问题:平面直角坐标系xOy中,点A,B的坐标分别是(-3,1),(-1,4),(1)①请在图中画出平面直角坐标系xOy;②点C的坐标是 ,点C关于x轴的对称点的坐标是 ;(2)设l是过点C且平行于y轴的直线,①点A关于直线l的对称点的坐标是 ;②在直线l上找一点P,使最小,在图中标出此时点P的位置;③若Q(m,n)为网格中任一格点,直接写出点Q关于直线l的对称点的坐标(用含m,n的式子表示). -参考答案-一、单选题1、B【分析】根据等量关系:原价×(1-x)2=现价列方程即可.【详解】解:根据题意,得:,故答案为:B.【点睛】本题考查一元二次方程的应用,找准等量关系列出方程是解答的关键.2、B【分析】根据绝对值,合并同类项和乘方法则分别计算即可.【详解】解:A、,故选项错误;B、,故选项正确;C、不能合并计算,故选项错误;D、,故选项错误;故选B.【点睛】本题考查了绝对值,合并同类项和乘方,掌握各自的定义和运算法则是必要前提.3、D【分析】由题意直接依据勾股定理的逆定理逐项进行判断即可.【详解】解:A.∵,∴,,为边不能组成直角三角形,故本选项不符合题意;B.∵42+92≠112,∴以4,9,11为边不能组成直角三角形,故本选项不符合题意;C.∵62+152≠172,∴以6,15,17为边不能组成直角三角形,故本选项不符合题意;D.∵72+242=252,∴以7,24,25为边能组成直角三角形,故本选项符合题意;故选:D.【点睛】本题考查勾股定理的逆定理,能熟记勾股定理的逆定理是解答此题的关键,注意掌握如果一个三角形的两边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.4、D【分析】根据绝对值的定义求出a,b的值,根据a,b同号,分两种情况分别计算即可.【详解】解:∵|a|=3,|b|=1,∴a=±3,b=±1,∵a,b同号,∴当a=3,b=1时,a+b=4;当a=-3,b=-1时,a+b=-4;故选:D.【点睛】本题考查了绝对值,有理数的加法,考查分类讨论的数学思想,知道a,b同号分两种:a,b都是正数或都是负数是解题的关键.5、C【分析】通过计算成绩为91、92分的人数,进行判断,不影响成绩出现次数最多的结果,因此不影响众数,同时不影响找第25、26位数据,因此不影响中位数的计算,进而进行选择.【详解】解:由表格数据可知,成绩为91分、92分的人数为50-(12+10+8+6+5+3+2+1)=3(人),成绩为100分的,出现次数最多,因此成绩的众数是100,成绩从小到大排列后处在第25、26位的两个数都是98分,因此中位数是98,因此中位数和众数与被遮盖的数据无关,故选:C.【点睛】考查中位数、众数、方差、平均数的意义和计算方法,理解各个统计量的实际意义,以及每个统计量所反应数据的特征,是正确判断的前提.6、C【分析】由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.【详解】解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切线,点G、H分别是切点,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正确,不符合题意;延长EF与AB交于点N,如图:∵OF⊥EF,OF是⊙O的半径,∴EF是⊙O的切线,∴HE=EF,NF=NG,∴△ANE是等边三角形,∴FG//HE,FG=HE,∠AEF=60°,∴四边形EFGH是平行四边形,∠FEC=60°,又∵HE=EF,∴四边形EFGH是菱形,故B正确,不符合题意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正确,不符合题意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD=DE,∴AD=2CE,故C错误,符合题意.故选C.【点睛】本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.7、C【分析】根据题目中的图形,可以发现白色纸片的变化规律,然后根据第n个图案中白色纸片2023个,即可解题.【详解】解:由图可知,第1个图案中白色纸片的个数为:1+1×3=4,第2个图案中白色纸片的个数为:1+2×3=7,第3个图案中白色纸片的个数为:1+3×3=10,…第n个图案中白色纸片的个数为:1+3n,由题意得,1+3n =2023解得n=674故选:C.【点睛】本题考查图形的变化,发现题目中白色纸片的变化规律、利用数形结合思想解题是关键.8、D【分析】根据正数大于零,零大于负数,即可求解.【详解】解:在2,1,0,-1这四个数中,比0小的数是-1故选:D【点睛】本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.9、C【分析】计算每组小麦的发芽率,根据结果计算.【详解】解:∵∴=2880,故选:C.【点睛】此题考查了数据的频率估计概率,正确掌握频率公式计算频率是解题的关键.10、A【分析】一位数字9个,两位数字90个,三位数字900个,由此算出2022处于三位数字的第几个数字求得答案即可.【详解】∵共有9个1位数,90个2位数,900个3位数,∴2022-9-90×2=1833,∴1833÷3=611,∵此611是继99后的第611个数,∴此数是710,第三位是0,故从左往右数第2022位上的数字为0,故选:A.【点睛】此题主要考查了规律型:数字的变化类,根据已知得出变化规律是解题关键.二、填空题1、128°【分析】分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE ,则当M、N在线段EF上时△AMN的周长最小,此时由对称的性质及三角形内角和定理、三角形外角的性质即可求得结果.【详解】分别作点A关于BC、DC的对称点E、F,连接EF、DF、BE,如图 由对称的性质得:AN=FN,AM=EM∴∠F=∠NAD,∠E=∠MAB∵AM+AN+MN=EM+FN+MN≥EF∴当M、N在线段EF上时,△AMN的周长最小∵∠AMN+∠ANM=∠E+∠MAB+∠F+∠NAD=2∠E+2∠F=2(∠E+∠F)=2(180°−∠BAD)=2×(180°−116°)=128°故答案为:128°【点睛】本题考查了对称的性质,两点间线段最短,三角形内角和定理与三角形外角的性质等知识,作点A关于BC、DC的对称点是本题的关键.2、61°36′(或61.6°) , 【分析】根据直角和互余、互补的定义求出即可;.【详解】解:与互余的角是,;,(或61.6°);,是的互补角,,,,是的互补角,互补的角是,,故答案为:61°36′(或61.6°);,.【点睛】本题考查了角的有关计算,互余、互补等知识点的应用,解题的关键是掌握互余、互补的定义,互余的两个角的和为,互补的两个角的和.3、【分析】直接根据一元二次方程的解的定义,将代入得到关于的一元一次方程,进而解方程求解即可.【详解】解:∵关于x的方程x2﹣x+2a=4有一个根是x=﹣1,解得故答案为:1【点睛】本题考查了一元二次方程的解的定义,掌握解的定义是解题的关键.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.4、59【分析】由题意知∠AOD=∠COD∠AOC,∠AOC=∠AOB;计算求解即可.【详解】解:∵OC平分∠AOB∴∠AOC=∠AOB=∴∠AOD=∠COD∠AOC=90°31°=59°故答案为:59.【点睛】本题考查了角平分线与角的计算.解题的关键在于正确的表示各角的数量关系.5、20【分析】根据摸到黄球的频率稳定在0.2列式求解即可.【详解】解:由题意得,解得x=20,经检验x=20符合题意,故答案为:20.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.三、解答题1、(1)(2)【分析】(1)先去括号,再移项合并同类项,即可求解;(2)先去分母,再去括号,然后移项合并同类项,即可求解.(1)解:去括号得:移项合并同类项得:解得:;(2)解:去分母得:去括号得: ,移项合并同类项得:解得:.【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.2、(1)①见解析;②∠BPH=90°(2),证明见解析【分析】(1)①按照题意作图即可.②由等边三角形性质及平角为180°即可求得.(2)由(1)知是等边三角形可证得是等边三角形,即可由边角边证得,再由直角三角形的性质以及平角的性质可推得.(1)①如图所示,即为所求;以B、O为圆心,OB长为半径,画弧交于点C,连接OC,BC,即为等边三角形.②是等边三角形,,,,;(2),证明如下:如图,连接,,由(1)可知,是等边三角形,,,是等边三角形,,,,,,,,,,,,,,在中,,.【点睛】本题考查了三角形内的综合问题,包括尺规作图,全等三角形的证明及性质,等边三角形的性质等,两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“”),等边三角形三边相等,且每个角都等于60°,在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半熟悉其判定及性质是解题的关键.3、,过程见解析【分析】先将代入方程,进而得到关于“”的方程,解一元一次方程即可求解.【详解】解:的解为即【点睛】本题考查了一元一次方程的解,解一元一次方程,掌握解一元一次方程的步骤是解题的关键.4、(1),数轴见解析(2),数轴见解析(3)-1<x≤2,数轴见解析(4)x≤-10,数轴见解析【分析】(1)去括号,移项,合并同类项,然后把x的系数化为1,最后在数轴上表示即可;(2)去分母,去括号,移项,合并同类项,然后把x的系数化为1,最后在数轴上表示即可;(3)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;(4)分别计算出两个不等式的解集,再确定出不等式组的解集,最后在数轴上表示;【小题1】解:,去括号得:,移项合并得:,解得:,在数轴上表示为:【小题2】,去分母得:,去括号得:,移项合并得:,在数轴上表示为:【小题3】,由①得:x>-1,由②得:x≤2,不等式组的解集为:-1<x≤2,在数轴上表示为:【小题4】,由①得:x<-4,由②得:x≤-10,不等式组的解集为:x≤-10,在数轴上表示为:【点睛】此题主要考查了不等式、不等式组的解法,以及不等式组解集在数轴上的表示方法,利用数形结合得出不等式组的解集是解题关键.5、(1)作图见解析,(1,2),(1,-2);(2)①(5,1);②P点位置见解析;③(2-m,n)【分析】(1)由A、B点坐标即可知x轴和y轴的位置,即可从图像中得知C点坐标,而的横坐标不变,纵坐标为C点纵坐标的相反数.(2)由C点坐标(1,2)可知直线l为x=1①点是点A关于直线l的对称点,由横坐标和点A横坐标之和为2,纵坐标不变,即可求得坐标为(5,1).②由①可得点A关于直线l的对称点,连接B交l于点P,由两点之间线段最短即可知点P为所求点.③设点Q(m,n)关于l的对称点为(x,y),则有(m+x)÷2=1,y=n,即可求得对称点(2-m,n)【详解】(1)平面直角坐标系xOy如图所示由图象可知C点坐标为(1,2)点是 C点关于x轴对称得来的则的横坐标不变,纵坐标为C点纵坐标的相反数即点坐标为(1,-2).(2)如图所示,由C点坐标(1,2)可知直线l为x=1①A点坐标为(-3,1),关于直线x=1对称的坐标横坐标与A点横坐标坐标和的一半为1,纵坐标不变则为坐标为(5,1)②连接①所得B,B交直线x=1于点P由两点之间线段最短可知为B时最小又∵点是点A关于直线l的对称点∴∴为B时最小故P即为所求点.③设任意格点Q(m,n)关于直线x=1的对称点为(x,y)有(m+x)÷2=1,y=n即x=2-m,y=n则纵坐标不变,横坐标为原来横坐标相反数加2即对称点坐标为(2-m,n).【点睛】本题考查了坐标轴中的对称点问题,熟悉坐标点关于轴对称的坐标变换,结合图象运用数形结合思想是解题的关键.
相关试卷
这是一份【真题汇总卷】2022年北京市海淀区中考数学模拟定向训练 B卷(含答案解析),共24页。试卷主要包含了如图,在中,,,则的值为等内容,欢迎下载使用。
这是一份【真题汇编】2022年北京市海淀区中考数学模拟定向训练 B卷(含答案详解),共27页。试卷主要包含了已知点A,下列式中,与是同类二次根式的是等内容,欢迎下载使用。
这是一份【难点解析】2022年中考数学模拟定向训练 B卷(含答案及详解),共23页。试卷主要包含了下列说法正确的是,抛物线的顶点坐标是等内容,欢迎下载使用。