![【难点解析】2022年广东省普宁市中考数学三模试题(含答案详解)第1页](http://www.enxinlong.com/img-preview/2/3/12676629/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年广东省普宁市中考数学三模试题(含答案详解)第2页](http://www.enxinlong.com/img-preview/2/3/12676629/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年广东省普宁市中考数学三模试题(含答案详解)第3页](http://www.enxinlong.com/img-preview/2/3/12676629/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【难点解析】2022年广东省普宁市中考数学三模试题(含答案详解)
展开这是一份【难点解析】2022年广东省普宁市中考数学三模试题(含答案详解),共27页。试卷主要包含了如图,是的外接圆,,则的度数是,已知点D,已知,则∠A的补角等于等内容,欢迎下载使用。
2022年广东省普宁市中考数学三模试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )
A. B. C. D.
2、如图,任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是( )
A.E,F,G,H是各边中点.且AC=BD时,四边形EFGH是菱形
B.E,F,G,H是各边中点.且AC⊥BD时,四边形EFGH是矩形
C.E,F,G,H不是各边中点.四边形EFGH可以是平行四边形
D.E,F,G,H不是各边中点.四边形EFGH不可能是菱形
3、若,则代数式的值为( )
A.6 B.8 C.12 D.16
4、如图,与交于点,与互余,,则的度数为( )
A. B. C. D.
5、如图,是的外接圆,,则的度数是( )
A. B. C. D.
6、如图,在的方格纸中,每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形.点E是格点四边形ABCD的AB边上一动点,连接ED,EC,若格点与相似,则的长为( )
A. B. C.或 D.或
7、平面直角坐标系中,已知点,,其中,则下列函数的图象可能同时经过P,Q两点的是( ).
A. B.
C. D.
8、已知点D、E分别在的边AB、AC的反向延长线上,且ED∥BC,如果AD:DB=1:4,ED=2,那么BC的长是( )
A.8 B.10 C.6 D.4
9、已知,则∠A的补角等于( )
A. B. C. D.
10、小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ).
分数 | 25 | 26 | 27 | 28 | 29 | 30 |
人数 | 3 | 5 | 10 | 14 | 12 | 6 |
A.该组数据的众数是28分 B.该组数据的平均数是28分
C.该组数据的中位数是28分 D.超过一半的同学体育测试成绩在平均水平以上
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,在中,,和的平分线分别交于点、,若,,,则的长为__________.
2、如图点O在直线上,与互为余角,则的大小为________.
3、若关于x的二次三项式是完全平方式,则k=____.
4、如果点A(﹣1,3)、B(5,n)在同一个正比例函数的图像上,那么n=___.
5、如图所示,已知直线,且这两条平行线间的距离为5个单位长度,点为直线上一定点,以为圆心、大于5个单位长度为半径画弧,交直线于、两点.再分别以点、为圆心、大于长为半径画弧,两弧交于点,作直线,交直线于点.点为射线上一动点,作点关于直线的对称点,当点到直线的距离为4个单位时,线段的长度为______.
三、解答题(5小题,每小题10分,共计50分)
1、如图所示,下图是由七块积木搭成,这几块积木都是相同的正方体,利用下面方格纸中的纵横线,画出从这个图形的正面看、左面看和上面看的图形.
2、已知平行四边形的顶点、分别在其的边、上,顶点、在其的对角线上.
图1 图2
(1)如图1,求证:;
(2)如图2,若,,求的值;
(3)如图1,当,,求时,求的值.
3、如图,数轴上A和B.
(1)点A表示 ,点B表示 .
(2)点C表示最小的正整数,点D表示的倒数,点E表示,在数轴上描出点C、D、E.
(3)将该数轴上点A、B、C、D、E表示的数用“<”连起来: .
4、以下表格是某区一户人家2021年11月份、12月份两次缴纳家庭使用自来水水费的回执,已知污水费、水资源费等都和用水量有关,根据表中提供的信息回答下列问题:
表1:
上月指数 | 387 | 本月指数 | 403 |
加减水量 | 0吨 | 水量 | l6吨 |
污水费 | 16.8元 | 垃圾费 | 8.00元 |
水资源费 | 3.20元 |
|
|
水价 | 1.45 | 水费23.20元 |
|
违约金 | 0.00元 |
|
|
合计 | 51.20元 | 缴费状态 | 已缴 |
表2:
上月指数 | 403 | 本月指数 | 426 |
加减水量 | 0吨 | 水量 | a吨 |
污水费 | b元 | 垃圾费 | 8.00元 |
水资源费 | 4.60元 |
|
|
水价 | 1.45 | 水费33.35元 |
|
违约金 | 0.00元 |
|
|
合计 | c元 | 缴费状态 | 已缴 |
(1)根据表1可知,污水费每吨 元,水资源费每吨 元;
(2)请写出表2中a= ,b= ,c= ;
(3)若该用户某个月份缴纳该项费用回执中合计是89元,则该用户这个月共消耗自来水多少吨?
5、计算:
(1);
(2).
-参考答案-
一、单选题
1、B
【分析】
先求出,再根据中点求出,即可求出的长.
【详解】
解:∵,
∴,,
∵点是线段的中点,
∴,
,
故选:B.
【点睛】
本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.
2、D
【分析】
当为各边中点,,,四边形是平行四边形;A中AC=BD,则,平行四边形为菱形,进而可判断正误;B中AC⊥BD,则,平行四边形为矩形,进而可判断正误;E,F,G,H不是各边中点,C中若四点位置满足,则可知四边形EFGH可以是平行四边形,进而可判断正误;D中若四点位置满足,则可知四边形EFGH可以是菱形,进而可判断正误.
【详解】
解:如图,连接当为各边中点时,可知分别为的中位线
∴
∴四边形是平行四边形
A中AC=BD,则,平行四边形为菱形;正确,不符合题意;
B中AC⊥BD,则,平行四边形为矩形;正确,不符合题意;
C中E,F,G,H不是各边中点,若四点位置满足,则可知四边形EFGH可以是平行四边形;正确,不符合题意;
D中若四点位置满足,则可知四边形EFGH可以是菱形;错误,符合题意;
故选D.
【点睛】
本题考查了平行四边形、菱形、矩形的判定,中位线等知识.解题的关键在于熟练掌握特殊平行四边形的判定.
3、D
【分析】
对已知条件变形为:,然后等式两边再同时平方即可求解.
【详解】
解:由已知条件可知:,
上述等式两边平方得到:,
整理得到:,
故选:D.
【点睛】
本题考查了等式恒等变形,完全平方公式的求值等,属于基础题,计算过程中细心即可.
4、B
【分析】
先由与互余,求解 再利用对顶角相等可得答案.
【详解】
解:与互余,
,
,
,
,
故选:B.
【点睛】
本题考查的是互余的含义,角的和差关系,对顶角的性质,掌握“两个角互余的含义”是解本题的关键.
5、C
【分析】
在等腰三角形OCB中,求得两个底角∠OBC、∠OCB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.
【详解】
解:在中,,
;
,,
;
又,
,
故选:.
【点睛】
本题考查了圆周角定理,等腰三角形的性质,三角形的内角和定理,熟练掌握圆周角定理是解题的关键.
6、C
【分析】
分∽和∽两种情况讨论,求得AE和BE的长度,根据勾股定理可求得DE和EC的长度,由此可得的长.
【详解】
解:由图可知DA=3,AB=8,BC=4,AE=8-EB,∠A=∠B=90°,
若∽,
则,即,
解得或,
当时,,,
,
当时,,,
,
若∽,
则,即,解得(不符合题意,舍去),
故或,
故选:C.
【点睛】
本题考查相似三角形的性质和判定,勾股定理,能结合图形,分类讨论是解题关键.注意不要忽略了题干中格点三角形的定义.
7、B
【分析】
先判断再结合一次函数,二次函数的增减性逐一判断即可.
【详解】
解:
同理:
当时,随的增大而减小,
由可得随的增大而增大,故A不符合题意;
的对称轴为: 图象开口向下,
当时,随的增大而减小,故B符合题意;
由可得随的增大而增大,故C不符合题意;
的对称轴为: 图象开口向上,
时,随的增大而增大,故D不符合题意;
故选B
【点睛】
本题考查的是一次函数与二次函数的图象与性质,掌握“一次函数与二次函数的增减性”是解本题的关键.
8、C
【分析】
由平行线的性质和相似三角形的判定证明△ABC∽△ADE,再利用相似三角形的性质和求解即可.
【详解】
解:∵ED∥BC,
∴∠ABC=∠ADE,∠ACB=∠AED,
∴△ABC∽△ADE,
∴BC:ED= AB:AD,
∵AD:DB=1:4,
∴AB:AD=3:1,又ED=2,
∴BC:2=3:1,
∴BC=6,
故选:C
【点睛】
本题考查平行线的性质、相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答的关键.
9、C
【分析】
若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解: ,
∠A的补角为:
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
10、B
【分析】
由众数的含义可判断A,由平均数的含义可判断B,D,由中位数的含义可判断C, 从而可得答案.
【详解】
解:由分出现次,出现的次数最多,所以该组数据的众数是28分,故A不符合题意;
该组数据的平均数是
故B符合题意;
50个数据,按照从小到大的顺序排列,第25个,26个数据为28分,28分,
所以中位数为:(分),故C不符合题意;
因为超过平均数的同学有:
所以超过一半的同学体育测试成绩在平均水平以上,故D不符合题意;
故选B
【点睛】
本题考查的是平均数,众数,中位数的含义,掌握“根据平均数,众数,中位数的含义求解一组数据的平均数,众数,中位数”是解本题的关键.
二、填空题
1、2
【分析】
利用角平分线以及平行线的性质,得到和,利用等边对等角得到,,最后通过边与边之间的关系即可求解.
【详解】
解:如下图所示:
、分别是与的角平分线
,
,
,
,
故答案为:2.
【点睛】
本题主要是考查了等角对等边以及角平分线和平行的性质,熟练根据角平分线和平行线的性质,得到相等角,这是解决该题的关键.
2、90°
【分析】
利用互余的定义,平角的定义,角的差计算即可.
【详解】
∵与互为余角,
∴∠AOC+∠BOD=90°,
∴∠COD=180°-90°=90°,
故答案为:90°.
【点睛】
本题考查了互余即两个角的和是90°,角的和差,熟练记住互余的定义,灵活运用角的和差是解题的关键.
3、﹣3或1
【分析】
根据这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可.
【详解】
解:∵二次三项式是完全平方式,
∴=或=,
∴或,
解得k=﹣3或k=1,
故答案为:﹣3或1.
【点睛】
本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键.
4、
【分析】
设过的正比例函数为: 求解的值及函数解析式,再把代入函数解析式即可.
【详解】
解:设过的正比例函数为:
解得:
所以正比例函数为:
当时,
故答案为:
【点睛】
本题考查的是利用待定系数法求解正比例函数的解析式,正比例函数的性质,熟练的利用待定系数法列方程是解本题的关键.
5、或
【分析】
根据勾股定理求出PE=3,设OH=x,可知,DH=(x-3)或(3- x),勾股定理列出方程,求出x值即可.
【详解】
解:如图所示,过点作直线的垂线,交m、n于点D、E,连接,
由作图可知,,,点到直线的距离为4个单位,即,
,
则,,
设OH=x,可知,DH=(3- x),
解得,,
;
如图所示,过点作直线的垂线,交m、n于点D、E,连接,
由作图可知,,,点到直线的距离为4个单位,即,
,
则,,
设OH=x,可知,DH=(x-3),
解得,,
;
故答案为:或
【点睛】
本题考查了勾股定理和轴对称,解题关键是画出正确图形,会分类讨论,设未知数,根据勾股定理列方程.
三、解答题
1、图见解析
【分析】
从正面看从左往右3列正方形的个数依次为1,3,2;从左面看从左往右2列正方形的个数依次为3,1;从上面看从左往右3列正方形的个数依次为1,2,1;画出从正面,左面,上面看,得到的图形即可.
【详解】
解:如图所示:
【点睛】
本题考查了作图−−三视图、由三视图判断几何体,本题画几何体的三视图时应注意小正方形的数目及位置.
2、
(1)证明见解析
(2)
(3)
【分析】
(1)根据四边形,四边形都是平行四边形,得到和,然后证明,即可证明出;
(2)作于M点,设,首先根据,证明出四边形和四边形都是矩形,然后根据同角的余角相等得到,然后根据同角的三角函数值相等得到,即可表示出BF和FH的长度,进而可求出的值;
(3)过点E作于M点,首先根据题意证明出,得到,,然后根据等腰三角形三线合一的性质得到,设,根据题意表示出,,过点E作,交BD于N,然后由证明出,设,根据相似三角形的性质得出,然后由30°角所对直角边是斜边的一半得到,进而得到,解方程求出,然后表示出,根据勾股定理得到EH和EF的长度,即可求出的值.
(1)
解:∵四边形EFGH是平行四边形
∴
∴
∵四边形ABCD是平行四边形
∴
∴
在和中
∴
∴
∴
∴;
(2)
解:如图所示,作于M点,设
∵四边形和四边形都是平行四边形,
∴四边形和四边形都是矩形
∴
∴
∵
∴,
∴
∴
∴
∵
∴
由(1)得:
∴
∴;
(3)
解:如图所示,过点E作于M点
∵四边形ABCD是平行四边形
∴
∵
∴,即
∵
∴
∴
∴
∴
设
∵
∴
∴
∴
由(1)得:
∴
∴
过点E作,交BD于N
∵
∴
∴
∴
设
∴
∴
∵
∴
∵
∴
∴
∵
∴
∴
∴
解得:或(舍去)
∴
由勾股定理得:
∴.
【点睛】
此题考查了矩形的性质,相似三角形的性质和判定,勾股定理等知识,解题的关键是熟练掌握矩形的性质,相似三角形的性质和判定,勾股定理,根据题意正确作出辅助线求解.
3、
(1),
(2)见解析
(3)1<<<<
【分析】
(1)根据数轴直接写出A、B所表示的数即可;
(2)根据最小的正整数是1,的倒数是,然后据此在数轴上找到C、D、E即可;
(3)将A、B、C、D、E表示的数从小到大排列,再用 “<”连接即可.
(1)
解:由数轴可知A、B表示的数分别是:,.
故答案为:,.
(2)
解:∵最小的正整数是1,的倒数是
∴C表示的数是1,D表示的数是,
∴如图:数轴上的点C、D、E即为所求.
(3)
解:根据(2)的数轴可知,将点A、B、C、D、E表示的数用“<”连接如下:
1<<<<.
【点睛】
本题主要考查了在数轴上表示数、倒数、最小的正整数、倒数以及利用数轴比较有理数的大小,在数轴上正确表示有理数成为解答本题的关键.
4、
(1)
(2),,
(3)该用户这个月共消耗自来水30吨.
【分析】
(1)由污水费除以用水的数量可得污水费的单价,由水资源费除以用水的数量可得水资源费的单价;
(2)由本月指数减去上月指数可得用水量,由用水数量乘以污水费的单价可得污水费用,再把污水费,水资源费,垃圾费,水费相加即可得到的值;
(3)设该用户这个月共消耗自来水吨,再由污水费,水资源费,垃圾费,水费之和为89列方程解方程即可.
(1)
解:由表1可得:污水费每吨(元),水资源费每吨(元),
故答案为:
(2)
解:用水量(吨),
污水费(元),
总费用(元).
故答案为:
(3)
解:设该用户这个月共消耗自来水吨,则
整理得:
解得:
答:设该用户这个月共消耗自来水吨.
【点睛】
本题考查的是有理数的加减乘除运算的实际应用,一元一次方程的应用,理解题意列出运算式,确定相等关系列方程是解本题的关键.
5、
(1)
(2)
【分析】
(1)先把括号内的二次根式化简及除法运算,再计算二次根式的除法运算,最后合并同类二次根式即可;
(2)先计算括号内的二次根式的减法运算,再计算二次根式的除法运算,从而可得答案.
(1)
解:
(2)
解:
【点睛】
本题考查的是二次根式的混合运算,掌握“二次根式的混合运算的运算顺序”是解本题的关键.
相关试卷
这是一份【真题汇编】2022年广东省普宁市中考数学第三次模拟试题(含答案详解),共26页。试卷主要包含了若,则代数式的值为,和按如图所示的位置摆放,顶点B,若抛物线的顶点坐标为等内容,欢迎下载使用。
这是一份【真题汇编】2022年广东省普宁市中考数学二模试题(含答案解析),共22页。
这是一份【难点解析】2022年山东省潍坊市高密市中考数学三模试题(含答案详解),共25页。试卷主要包含了如图,是的外接圆,,则的度数是等内容,欢迎下载使用。