【难点解析】2022年河南省郑州市中考数学模拟真题 (B)卷(含答案解析)
展开
这是一份【难点解析】2022年河南省郑州市中考数学模拟真题 (B)卷(含答案解析),共20页。试卷主要包含了已知,则代数式的值是,定义一种新运算,下列各对数中,相等的一对数是,观察下列图形等内容,欢迎下载使用。
2022年河南省郑州市中考数学模拟真题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列对一元二次方程x2-2x-4=0根的情况的判断,正确的是( )A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.无法判断2、到三角形三个顶点距离相等的点是( )A.三边垂直平分线的交点 B.三条高所在直线的交点C.三条角平分线的交点 D.三条中线的交点3、若,则下列分式化简正确的是( )A. B. C. D.4、已知,则代数式的值是( )A.﹣3 B.3 C.9 D.185、平面直角坐标系中,点P(2,1)关于x轴对称的点的坐标是( )A. B. C. D.6、下列关于x的方程中一定有实数根的是( )A.x2=﹣x﹣1 B.2x2﹣6x+9=0 C.x2+mx+2=0 D.x2﹣mx﹣2=07、定义一种新运算:,,则方程的解是( )A., B., C., D.,8、下列各对数中,相等的一对数是( )A.与 B.与 C.与 D.与9、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )A.21 B.25 C.28 D.2910、若,则的值是( )A. B.0 C.1 D.2022第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知:的平分线与的垂直平分线相交于点,,,垂足分别为、,,,则________.2、在,,,,中,负数共有______个.3、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.4、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.5、若关于x的分式方程有增根,则a=________.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,△ABC三个顶点的坐标为A(1,2),B(4,1),C(2,4).(1)在图中画出△ABC关于y轴对称的图形△A′B′C′;并写出点B′的坐标.(2)在图中x轴上作出一点P,使PA+PB的值最小.2、平面上有三个点A,B,O.点A在点O的北偏东方向上,,点B在点O的南偏东30°方向上,,连接AB,点C为线段AB的中点,连接OC.(1)依题意补全图形(借助量角器、刻度尺画图);(2)写出的依据:(3)比较线段OC与AC的长短并说明理由:(4)直接写出∠AOB的度数.3、(1)解方程:x²-2x-8=0;(2)计算:5sin60°-cos245°.4、我们定义:如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.(1)请说明方程是倍根方程;(2)若是倍根方程,则,具有怎样的关系?(3)若一元二次方程是倍根方程,则,,的等量关系是____________(直接写出结果)5、用适当的方法解下列方程:(1);(2). -参考答案-一、单选题1、B【分析】根据方程的系数结合根的判别式,可得出Δ=20>0,进而可得出方程x2-2x-4=0有两个不相等的实数根.【详解】解:∵Δ=(-2)2-4×1×(-4)= 20>0,∴方程x2-2x-4=0有两个不相等的实数根.故选:B.【点睛】本题考查了根的判别式,牢记“当Δ>0时,方程有两个不相等的实数根”是解题的关键.2、A【分析】根据线段垂直平分线上的点到两端点的距离相等解答.【详解】解:∵线段垂直平分线上的点到两端点的距离相等,∴到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:A.【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3、C【分析】由,令,再逐一通过计算判断各选项,从而可得答案.【详解】解:当,时,,,故A不符合题意;,故B不符合题意;而 故C符合题意;.故D不符合题意故选:C.【点睛】本题考查的是利用特值法判断分式的变形,同时考查分式的基本性质,掌握“利用特值法解决选择题或填空题”是解本题的关键.4、C【分析】由已知得到,再将变形,整体代入计算可得.【详解】解:∵,∴,∴===9故选:C.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.5、B【分析】直接利用关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,得出答案.【详解】解:点P(2,1)关于x轴对称的点的坐标是(2,-1).故选:B.【点睛】本题主要考查了关于x轴对称点的性质,正确掌握横纵坐标的关系是解题关键.6、D【分析】分别求出方程的判别式,根据判别式的三种情况分析解答.【详解】解:A、∵x2=﹣x﹣1,∴,∵,∴该方程没有实数根;B、2x2﹣6x+9=0,∵,∴该方程没有实数根;C、x2+mx+2=0,∵,无法判断与0的大小关系,∴无法判断方程根的情况;D、x2﹣mx﹣2=0,∵,∴方程一定有实数根,故选:D.【点睛】此题考查了一元二次方程根的情况,正确掌握判别式的计算方法及根的三种情况是解题的关键.7、A【分析】根据新定义列出关于x的方程,解方程即可.【详解】解:由题意得,方程,化为,整理得,,,∴,解得:,,故选A.【点睛】本题考查了公式法解一元二次方程,正确理解新运算、掌握公式法解一元二次方程的一般步骤是解题的关键.8、C【分析】先化简,再比较即可.【详解】A. ∵=1,=-1,∴≠,故不符合题意;B. ∵=-1,=1,∴≠,故不符合题意;C. ∵=-1,=-1,∴=,故符合题意;D. ∵=,=,∴≠,故不符合题意;故选C.【点睛】本题考查了有理数的乘方,绝对值,有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.正确化简各数是解答本题的关键.9、D【分析】根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.【详解】解:∵第1个图形中圆圈数量5=1+4×1,第2个图形中圆圈数量9=1+4×2,第3个图形中圆圈数量13=1+4×3,……∴第n个图形中圆圈数量为1+4×n=4n+1,当n=7时,圆圈的数量为29,故选:D.【点睛】本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.10、C【分析】先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可.【详解】解:∵,∴a-2=0,b+1=0,∴a=2,b=-1,∴=,故选C.【点睛】本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键.二、填空题1、【分析】连接,,证明,,根据,即可求得【详解】解:连接,,是的平分线,,,,,,在和中,,,,是的垂直平分线,,在和中, ,,,,,,.故答案为:.【点睛】本题考查了角平分线的性质,垂直平分线的性质,三角形全等的性质与判定,掌握以上性质定理是解题的关键.2、3【分析】将各数化简,即可求解.【详解】解:∵,,,,,∴负数有,,,共3个.故答案为:3【点睛】本题主要考查了乘方的运算,绝对值的性质,有理数的分类,熟练掌握乘方的运算,绝对值的性质,有理数的分类是解题的关键.3、5或3【分析】分点P在圆内或圆外进行讨论.【详解】解:①当点P在圆内时,⊙O的直径长为8+2=10(cm),半径为5cm;②当点P在圆外时,⊙O的直径长为8-2=6(cm),半径为3cm;综上所述:⊙O的半径长为 5cm或3cm.故答案为:5或3.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.4、或【分析】分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可【详解】如图:当将纸片沿纵向对折根据题意可得:为的三等分点在中有如图:当将纸片沿横向对折根据题意得:,在中有为的三等分点故答案为:或【点睛】本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.5、【分析】分式方程去分母转化为整式方程,由分式方程有增根求出a的值即可.【详解】解:,去分母得: x−a=3-x,由分式方程有增根,得到x−3=0,即x=3,代入整式方程得:3−a=3-3,解得:a=3.故答案为:3.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.三、解答题1、(1)作图见解析,点B′的坐标为(-4,1);(2)见解析【分析】(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;(2)作出点A关于x轴的对称点A″,再连接A″B,与x轴的交点即为所求.【详解】解:(1)如图所示,△A′B′C′即为所求.点B′的坐标为(-4,1);(2)如图所示,点P即为所求.【点睛】本题主要考查了作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数.2、(1)见解析;(2)三角形的两边之和大于第三边;(3) ,理由见解析;(4)70°【分析】(1)根据题意画出图形,即可求解;(2)根据三角形的两边之和大于第三边,即可求解;(3)利用刻度尺测量得: ,即可求解;(4)用180°减去80°,再减去30°,即可求解.【详解】解:(1)根据题意画出图形,如图所示:(2)在△AOB中,因为三角形的两边之和大于第三边,所以;(3) ,理由如下:利用刻度尺测量得: ,AC=2cm,∴;(4)根据题意得: .【点睛】本题主要考查了方位角,三角形的三边关系及其应用,中点的定义,明确题意,准确画出图形是解题的关键.3、(1);(2)【分析】(1)利用因式分解法求解;(2)代入特殊角的三角函数值计算即可.【详解】解:(1)x²-2x-8=0∴; (2)原式==.【点睛】此题考查了计算能力,正确掌握解一元二次方程的方法及熟记特殊角的三角函数值是解题的关键.4、(1)见解析(2),或(3)【分析】(1)因式分解法解一元二次方程,进而根据定义进行判断即可;(2)因式分解法解一元二次方程,进而根据定义得其中一个根是另一个根的2倍,即可求解;(3)公式法解一元二次方程,进而根据定义得其中一个根是另一个根的2倍,即可求解.(1)是倍根方程,理由如下:解方程,得,,∵2是1的2倍,∴一元二次方程是倍根方程;(2)是倍根方程,且,,或,∴,或(3)解:是倍根方程,,或即或或即或故答案为:【点睛】本题考查了倍根方程的定义,解一元二次方程,掌握解一元二次方程的方法是解题的关键.5、(1),(2),【分析】(1)用配方法解即可;(2)用因式分解法即可.(1)方程配方得:开平方得:解得:,(2)原方程可化为:即∴或解得:,【点睛】本题考查了解一元二次方程的配方法和因式分解法,根据方程的特点采用适当的方法可使解方程简便.
相关试卷
这是一份【真题汇总卷】2022年河南省郑州市中考数学模拟真题测评 A卷(含答案及解析),共32页。试卷主要包含了下列计算错误的是,已知的两个根为等内容,欢迎下载使用。
这是一份【真题汇总卷】2022年河南省郑州市中考数学模拟真题 (B)卷(含答案详解),共22页。试卷主要包含了如图所示,,,,,则等于,下列计算错误的是等内容,欢迎下载使用。
这是一份【真题汇编】2022年河南省郑州市中考数学模拟专项测试 B卷(含答案及解析),共21页。试卷主要包含了已知点,下列计算错误的是,已知点D等内容,欢迎下载使用。