【难点解析】2022年河北省沧州市中考数学三年真题模拟 卷(Ⅱ)(含详解)
展开2022年河北省沧州市中考数学三年真题模拟 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知一个圆锥的高为3,母线长为5,则圆锥的侧面积是( )
A.10π B.12π C.16π D.20π
2、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )
A. B. C. D.
3、如图,是多功能扳手和各部分功能介绍的图片.阅读功能介绍,计算图片中∠α的度数为( )
A.60° B.120° C.135° D.150°
4、如图,在中,,,,分别在、上,将沿折叠,使点落在点处,若为的中点,则折痕的长为( )
A. B.2 C.3 D.4
5、如图,五边形中,,CP,DP分别平分,,则( )
A.60° B.72° C.70° D.78°
6、下列利用等式的性质,错误的是( )
A.由,得到 B.由,得到
C.由,得到 D.由,得到
7、下列一元二次方程有两个相等的实数根的是( )
A. B.
C. D.
8、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知S△AFE=1,则S△ABD的值是( )
A.9 B.10 C.12 D.14
9、如图,已知△A′B′C′与△ABC是位似图形,点O是位似中心,若A′是OA的中点,则△A′B'C′与△ABC的面积比是( )
A.1:4 B.1:2 C.2:1 D.4:1
10、若x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则4b﹣2a的值为( )
A.﹣2 B.﹣1 C.1 D.2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小河的两条河岸线a∥b,在河岸线a的同侧有A、B两个村庄,考虑到施工安全,供水部门计划在岸线b上寻找一处点Q建设一座水泵站,并铺设水管PQ,并经由PA、PB跨河向两村供水,其中QP⊥a于点P.为了节约经费,聪明的建设者们已将水泵站Q点定好了如图位置(仅为示意图),能使三条水管长的和最小.已知,,,在A村看点P位置是南偏西30°,那么在A村看B村的位置是_________.
2、已知是二元一次方程的一个解,那么_______.
3、等边的边长为2,P,Q分别是边AB,BC上的点,连结AQ,CP交于点O.以下结论:①若,则;②若,则;③若点P和点Q分别从点A和点C同时出发,以相同的速度向点B运动(到达点B就停止),则点O经过的路径长为,其中正确的是______(序号).
4、如图,将一副直角三角板叠放在一起,使直角顶点重合于点,若∠COB=50°,则∠AOD=_______
5、实数a、b在数轴上对应点的位置如图所示,化简的值是_________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,D、E分别是AC、AB上的点,△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,求AE、BE的长.
2、解方程组: .
3、敕勒川,阴山下,天似穹庐,笼盖四野.天苍苍,野茫茫,风吹草地见牛羊,河套地区地势平坦、土地肥沃,适合大规模农牧.现有一片草场,草匀速生长,如果放牧360只羊,4周可以将草全部吃完.如果放牧210只羊,9周才能将草全部吃完.(假设每只羊每周吃的草量相等)
(1)求这片草场每周生长的草量和牧民进驻前原有草量的比;
(2)如果牧民准备在这片草场放牧8周,那么最多可以放牧多少只羊?
4、(综合与实践)现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD,FG和灯柱AB如图①所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:
①根据光源确定榕树在地面上的影子;
②测量出相关数据,如高度,影长等;
③利用相似三角形的相关知识,可求出所需要的数据.
根据上述内容,解答下列问题:
(1)已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;
(2)如图①,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;
(3)无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM的高度为 米.
5、规定:A,B,C是数轴上的三个点,当CA=3CB时我们称C为[A,B]的“三倍距点”,当CB=3CA时,我们称C为[B,A]的“三倍距点”.点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b−5|=0.
(1) a=__________,b=__________;
(2)若点C在线段AB上,且为[A,B]的“三倍距点”,则点C所表示的数为______;
(3)点M从点A出发,同时点N从点B出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为t秒.当点B为M,N两点的“三倍距点”时,求t的值.
-参考答案-
一、单选题
1、D
【分析】
首先利用勾股定理求得底面半径的长,然后根据扇形的面积公式即可求解.
【详解】
解:圆锥的底面半径是:,则底面周长是:,
则圆锥的侧面积是:.
故选:D.
【点睛】
本题主要考查三视图的知识和圆锥侧面面积的计算,解题的关键是由三视图得到立体图形,及记住圆锥的侧面面积公式.
2、B
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:641200用科学记数法表示为:641200=,
故选择B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、B
【分析】
观察图形发现∠α是正六边形的一个内角,直接求正六边形的内角即可.
【详解】
∠α=
故选:B.
【点睛】
本题考查正多边形的内角,解题的关键是观察图形发现∠α是正六边形的一个内角.
4、B
【分析】
由折叠的特点可知,,又,则由同位角相等两直线平行易证,故,又为的中点可得,由相似的性质可得求解即可.
【详解】
解:沿折叠,使点落在点处,
,,
又∵,
∴,
∴,
,
又为的中点,AE=AE'
∴,
,
即,
.
故选:B.
【点睛】
本题考查折叠的性质,相似三角形的判定和性质,掌握“A”字形三角形相似的判定和性质为解题关键.
5、C
【分析】
根据五边形的内角和等于,由,可求的度数,再根据角平分线的定义可得与的角度和,进一步求得的度数.
【详解】
解:五边形的内角和等于,,
,
、的平分线在五边形内相交于点,
,
.
故选:C.
【点睛】
本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.
6、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
7、B
【分析】
根据一元二次方程根的判别式判断即可.
【详解】
解:、△,
方程有两个不等实数根,不符合题意;
、△,
方程有两个相等实数根,符合题意;
、△,
方程有两个不相等实数根,不符合题意;
、△,
方程没有实数根,不符合题意;
故选:B.
【点睛】
本题考查了一元二次方程根的判别式,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根.
8、C
【分析】
过点F作MN⊥AD于点M,交BC于点N,证明△AFE∽△CFB,可证得,得MN=4MF,再根据三角形面积公式可得结论.
【详解】
解:过点F作MN⊥AD于点M,交BC于点N,连接BD,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC
∴△AFE∽△CFB
∴
∵DE=2AE
∴AD=3AE=BC
∴
∴,即
又
∴
∴
故选:C
【点睛】
本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.
9、A
【分析】
根据位似图形的概念得到△A′B′C′∽△ABC,A′B′∥AB,根据△OA′B′∽△OAB,求出,根据相似三角形的性质计算,得到答案.
【详解】
解:∵△A′B′C′与△ABC是位似图形,
∴△A′B′C′∽△ABC,A′B′∥AB,
∴△OA′B′∽△OAB,
∴,
∴△A′B'C′与△ABC的面积比为1:4,
故选:A.
【点睛】
本题考查的是位似变换的概念、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.
10、D
【分析】
将x=1代入原方程即可求出答案.
【详解】
解:将x=1代入原方程可得:1+a-2b=0,
∴a-2b=-1,
∴原式=-2(a-2b)
=2,
故选:D.
【点睛】
本题考查一元二次方程,解题的关键是正确理解一元二次方程的解的概念,本题属于基础题型.
二、填空题
1、北偏西60°
【分析】
根据题意作出图形,取的中点,连接,过点作,过点作,交的延长线于点,作关于的对称点,平移至处,则最小,即三条水管长的和最小,进而找到村的位置,根据方位角进行判断即可.
【详解】
解:如图,取的中点,连接,过点作,过点作,交的延长线于点
作关于的对称点,平移至处,则最小,即三条水管长的和最小,
此时三点共线,
点在的延长线上,
在A村看点P位置是南偏西30°,
,
是等边三角形
,
即在A村看B村的位置是北偏西60°
故答案为:北偏西60°
【点睛】
本题考查了轴对称的性质,方位角的计算,等边三角形的性质与判定,等边对等角,根据题意作出图形是解题的关键.
2、##
【分析】
把代入,即可求出a的值.
【详解】
解:由题意可得:,
,
解得:,
故答案为:.
【点睛】
本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
3、①③
【分析】
①根据全等三角形的性质可得∠BAQ=∠ACP,再由三角形的外角性质即可求解;第②结论有两种情况,准确画出图之后再来计算和判断;③要先判断判断轨迹(通过对称性或者全等)在来计算路径长.
【详解】
解:∵为等边三角形,
∴ ,
∵,
∴ ,
∴ ,
∵ ,
∴ ,
∴ ,
故①正确;
当时可分两种情况,
第一种,如①所证时,且 时,
∵,
∴ ,
第二种如图,时,若 时,则大小无法确定,
故②错误;
由题意知 ,
∵为等边三角形,
∴ ,
∴ ,
∴点O运动轨迹为AC边上中线,
∵的边长为2,
∴AC上边中线为 ,
∴点O经过的路径长为,
故③正确;
故答案为:①③.
【点睛】
此题是三角形综合题,考查了等边三角形的性质、全等三角形的判定与性质、三角形的外角性质等知识的综合应用.本题综合性强,熟练掌握等边三角形的性质是解题关键.
4、130°130度
【分析】
先计算出,再根据可求出结论.
【详解】
解:∵,
∴
∵
∴
故答案为:130°
【点睛】
本题考查了角的计算及余角的计算,熟悉图形是解题的关键.
5、b
【分析】
根据数轴,b>0,a<0,则a-b<0,化简绝对值即可.
【详解】
∵b>0,a<0,
∴a-b<0,
∴
=b-a+a
=b,
故答案为:b.
【点睛】
本题考查了绝对值的化简,正确确定字母的属性是化简的关键.
三、解答题
1、AE=8,BE=10.
【分析】
由△ADE∽△ABC,且DE=8,BC=24,CD=18,AD=6,根据相似三角形的对应边成比例,即可求得答案.
【详解】
解:∵△ADE∽△ABC,
∴,
∵DE=8,BC=24,CD=18,AD=6,
∴AC=AD+CD=24,
∴AE=8,AB=18,
∴BE=AB-AE=10.
【点睛】
本题考查了相似三角形的性质.注意掌握相似三角形的对应边成比例定理的应用是解此题的关键.
2、
【分析】
由②①,得:④,由③②,得:⑤,再由由⑤④,得:,再将代入④,可得,然后将,代入①,可得,即可求解.
【详解】
解: ,
由②①,得:④,
由③②,得:⑤,
由⑤④,得:,
解得:,
将代入④,得:,
解得:,
将,代入①,得: ,
解得:
方程组的解为:.
【点睛】
本题主要考查了解三元一次方程组,熟练掌握三元一次方程组的解法是解题的关键.
3、
(1)这片草场每周生长的草量和牧民进驻前原有草量的比为
(2)最多可以放牧225只羊
【分析】
(1)设每只羊每周吃的草量为1份,这片草场牧民进驻前原有草量份,这片草场每周生长的草量为份,根据等量关系列出方程组即可;
(2)设可以放牧只羊,列出一元一次不等式,即可求解.
(1)
解:设每只羊每周吃的草量为1份,这片草场牧民进驻前原有草量份,这片草场每周生长的草量为份,
依题意得:,
解得:,
.
答:这片草场每周生长的草量和牧民进驻前原有草量的比为.
(2)
设可以放牧只羊,
依题意得:,
解得:.
答:最多可以放牧225只羊.
【点睛】
本题主要考查二元一次方程组以及一元一次不等式的实际应用,找出数量关系,列出方程组和不等式是解题的关键.
4、
(1)见解析
(2)
(3)
【分析】
(1)根据题意画出图形;
(2)证明△ECD∽△EPB,根据相似三角形的性质列出比例式,把已知数据代入计算即可;
(3)根据△BCD∽△BEF求出BD,再根据△ACD∽△AMF求出MF,进而求出EM.
【小题1】
解:图①中GH即为所求;
【小题2】
∵CD∥PB,
∴△ECD∽△EPB,
∴,即,
解得:PB=9,
∵FG∥PB,
∴△HFG∽△HPB,
∴,即,
解得:FG=,
答:榕树FG的高度为米;
【小题3】
∵CD∥EF,
∴△BCD∽△BEF,
∴,即,
解得:BD=75,
∵CD∥EF,
∴△ACD∽△AMF,
∴,即,
解得:MF=,
∴EM=EF-MF=70-=(米),
故答案为:.
【点睛】
本题考查的相似三角形的判定和性质的应用,掌握相似三角形的判定定理和性质定理是解题的关键.
5、
(1)-3,5
(2)3
(3)当t为或t=3或秒时,点B为M,N两点的“三倍距点”.
【分析】
(1)根据非负数的性质,即可求得a,b的值;
(2)根据“三倍距点”的定义即可求解;
(3)分点B为[M,N]的“三倍距点”和点B为[N,M]的“三倍距点”两种情况讨论即可求解.
(1)
解:∵(a+3)2+|b−5|=0,
∴a+3=0,b−5=0,
∴a=-3,b=5,
故答案为:-3,5;
(2)
解:∵点A所表示的数为-3,点B所表示的数为5,
∴AB=5-(-3)=8,
∵点C为[A,B]的“三倍距点”,点C在线段AB上,
∴CA=3CB,且CA+CB=AB=8,
∴CB=2,
∴点C所表示的数为5-2=3,
故答案为:3;
(3)
解:根据题意知:点M所表示的数为3t-3,点N所表示的数为t+5,
∴BM=,BN=,(t>0),
当点B为[M,N]的“三倍距点”时,即BM=3BN,
∴,
∴或,
解得:,
而方程,无解;
当点B为[N,M]的“三倍距点” 时,即3BM=BN,
∴,
∴或,
解得:或t=3;
综上,当t为或t=3或秒时,点B为M,N两点的“三倍距点”.
【点睛】
本题考查了非负数的性质,一元一次方程的应用、数轴以及绝对值,熟练掌握“三倍距点”的定义是解题的关键.
【高频真题解析】2022年河北省沧州市中考数学模拟真题练习 卷(Ⅱ)(含答案详解): 这是一份【高频真题解析】2022年河北省沧州市中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共21页。试卷主要包含了实数a,下列各式的约分运算中,正确的是等内容,欢迎下载使用。
【真题汇总卷】2022年河北省沧州市中考数学真题模拟测评 (A)卷(含答案详解): 这是一份【真题汇总卷】2022年河北省沧州市中考数学真题模拟测评 (A)卷(含答案详解),共24页。试卷主要包含了下列判断错误的是,下列计算正确的是,如图,OM平分,,,则.等内容,欢迎下载使用。
【难点解析】2022年中考数学三年真题模拟 卷(Ⅱ)(含详解): 这是一份【难点解析】2022年中考数学三年真题模拟 卷(Ⅱ)(含详解),共25页。试卷主要包含了的相反数是等内容,欢迎下载使用。