![【难点解析】2022年北京市石景山区中考数学考前摸底测评 卷(Ⅱ)(含答案详解)01](http://www.enxinlong.com/img-preview/2/3/12676695/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年北京市石景山区中考数学考前摸底测评 卷(Ⅱ)(含答案详解)02](http://www.enxinlong.com/img-preview/2/3/12676695/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年北京市石景山区中考数学考前摸底测评 卷(Ⅱ)(含答案详解)03](http://www.enxinlong.com/img-preview/2/3/12676695/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【难点解析】2022年北京市石景山区中考数学考前摸底测评 卷(Ⅱ)(含答案详解)
展开2022年北京市石景山区中考数学考前摸底测评 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,已知AD∥BC,欲用“边角边”证明△ABC≌△CDA,需补充条件( )
A.AB = CD B.∠B = ∠D C.AD = CB D.∠BAC = ∠DCA
2、在实数范围内分解因式2x2﹣8x+5正确的是( )
A.(x﹣)(x﹣) B.2(x﹣)(x﹣)
C.(2x﹣)(2x﹣) D.(2x﹣4﹣)(2x﹣4+)
3、如图,E为正方形ABCD边AB上一动点(不与A重合),AB=4,将△DAE绕着点A逆时针旋转90°得到△BAF,再将△DAE沿直线DE折叠得到△DME.下列结论:①连接AM,则AM∥FB;②连接FE,当F,E,M共线时,AE=4﹣4;③连接EF,EC,FC,若△FEC是等腰三角形,则AE=4﹣4,其中正确的个数有( )个.
A.3 B.2 C.1 D.0
4、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知S△AFE=1,则S△ABD的值是( )
A.9 B.10 C.12 D.14
5、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式( )
A.10x﹣5(20﹣x)≥125 B.10x+5(20﹣x)≤125
C.10x+5(20﹣x)>125 D.10x﹣5(20﹣x)>125
6、二次函数()的图象如图,给出下列四个结论:①;②;③;④对于任意不等于-1的m的值一定成立.其中结论正确的个数是( )
A.1 B.2 C.3 D.4
7、下列说法中,不正确的是( )
A.是多项式 B.的项是,,1
C.多项式的次数是4 D.的一次项系数是-4
8、下列图形是中心对称图形的是( ).
A. B.
C. D.
9、如图,矩形ABCD中,点E,点F分别是BC,CD的中点,AE交对角线BD于点G,BF交AE于点H.则的值是( )
A. B. C. D.
10、将抛物线y=2x2向下平移3个单位后的新抛物线解析式为( )
A.y=2(x﹣3)2 B.y=2(x+3)2 C.y=2x2﹣3 D.y=2x2+3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、不等式的最大整数解是_______.
2、化简:(a>0)=___;
3、的倒数是________;绝对值等于3的数是________.
4、如图,已知△ABC与△ADE均是等腰直角三角形,∠BAC=∠ADE=90°,AB=AC=1,AD=DE=,点D在直线BC上,EA的延长线交直线BC于点F,则FB的长是 _____.
5、近几年,就业形式严峻,考研人数持续增加,官方统计显示2022年考研报名人数为4570000人,创下了历史新高,将数据“4570000”用科学记数法表示为______.
三、解答题(5小题,每小题10分,共计50分)
1、计算:
2、如图所示,,,,D在CE上,直线AE与线段BD交于点G(不与B、D重合)
(1)当时
①如图1,求的度数;
②如图2,若的角平分线交AD于F,求证:CF平分;
(2)如图3,过点A作BC的垂线,变BC,ED于点M、N,求EN和ED的数量关系.
3、如图,点A,B,C,D在同一条直线上,CEDF,EC=BD,AC=FD.求证:AE=FB.
4、某电影院某日某场电影的购票方式有两种,
①个人票;成人票每张30元,学生票每张15元:
②团体票:按个人票价的9折出售(满40人可购团体票,不足40人可按40人计算).某班在4位老师带领下去该电影院看该场电影,学生人数为x人
(1)若按个人票购买,该班师生买票共付费_____元(用含x的代数式表示);若按团体票购买,该班师生买票共付费_____元(用含x的代数式表示,且x≥36)
(2)如果该班学生人32人,该班师生买票最少可付费多少元?
5、如图1,点A、O、B依次在直线MN上,如图2,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,当其中一条射线回到起始位置时,运动停止,直线MN保持不动,设旋转时间为ts.
(1)当t=3时,∠AOB= ;
(2)在运动过程中,当射线OB与射线OA垂直时,求t的值;
(3)在旋转过程中,是否存在这样的t,使得射线OB、射线OA和射线OM,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分?如果存在,直接写出答案;如果不存在,请说明理由.
-参考答案-
一、单选题
1、C
【分析】
由平行线的性质可知,再由AC为公共边,即要想利用“边角边”证明△ABC≌△CDA,可添加AD=CB即可.
【详解】
∵AD∥BC,
∴.
∵AC为公共边,
∴只需AD=CB,即可利用“边角边”证明△ABC≌△CDA.
故选:C.
【点睛】
本题考查平行线的性质,三角形全等的判定.理解“边角边”即为两边及其夹角是解答本题的关键.
2、B
【分析】
解出方程2x2-8x+5=0的根,从而可以得到答案.
【详解】
解:∵方程2x2-8x+5=0中,a=2,b=-8,c=5,
∴Δ=(-8)2-4×2×5=64-40=24>0,
∴x=,
∴2x2-8x+5=2(x﹣)(x﹣),
故选:B.
【点睛】
本题考查了解一元二次方程,实数范围内分解因式,求出一元二次方程的根是解题的关键.
3、A
【分析】
①正确,如图1中,连接AM,延长DE交BF于J,想办法证明BF⊥DJ,AM⊥DJ即可;
②正确,如图2中,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,在MD上取一点J,使得ME=MJ,连接EJ,设AE=EM=MJ=x,则EJ=JD=x,构建方程即可解决问题;
③正确,如图3中,连接EC,CF,当EF=CE时,设AE=AF=m,利用勾股定理构建方程即可解决问题.
【详解】
解:①如下图,连接AM,延长DE交BF于J,
∵四边形ABCD是正方形,
∴AB=AD,∠DAE=∠BAF=90°,
由题意可得AE=AF,
∴△BAF≌△DAE(SAS),
∴∠ABF=∠ADE,
∵∠ADE+∠AED=90°,∠AED=∠BEJ,
∴∠BEJ+∠EBJ=90°,
∴∠BJE=90°,
∴DJ⊥BF,
由翻折可知:EA=EM,DM=DA,
∴DE垂直平分线段AM,
∴BF∥AM,故①正确;
②如下图,当F、E、M共线时,易证∠DEA=∠DEM=67.5°,
在MD上取一点J,使得ME=MJ,连接EJ,
则由题意可得∠M=90°,
∴∠MEJ=∠MJE=45°,
∴∠JED=∠JDE=22.5°,
∴EJ=JD,
设AE=EM=MJ=x,则EJ=JD=x,
则有x+x =4,
∴x=4﹣4,
∴AE=4﹣4,故②正确;
③如下图,连接CF,
当EF=CE时,设AE=AF=m,
则在△BCE中,有2m²=4²+(4-m)2,
∴m=4﹣4或-4﹣4 (舍弃),
∴AE=4﹣4,故③正确;
故选A.
【点睛】
本题考查旋转变换,翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.
4、C
【分析】
过点F作MN⊥AD于点M,交BC于点N,证明△AFE∽△CFB,可证得,得MN=4MF,再根据三角形面积公式可得结论.
【详解】
解:过点F作MN⊥AD于点M,交BC于点N,连接BD,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC
∴△AFE∽△CFB
∴
∵DE=2AE
∴AD=3AE=BC
∴
∴,即
又
∴
∴
故选:C
【点睛】
本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.
5、D
【分析】
根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.
【详解】
解:由题意可得,
10x-5(20-x)>125,
故选:D.
【点睛】
本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.
6、C
【分析】
由抛物线与x轴有两个交点得到b2﹣4ac>0,可判断①;根据对称轴是x=﹣1,可得x=﹣2、0时,y的值相等,所以4a﹣2b+c>0,可判断③;根据1,得出b=2a,再根据a+b+c<0,可得b+b+c<0,所以3b+2c<0,可判断②;x=﹣1时该二次函数取得最大值,据此可判断④.
【详解】
解:∵图象与x轴有两个交点,
∴方程ax2+bx+c=0有两个不相等的实数根,
∴b2﹣4ac>0,
∴4ac﹣b2<0,
①正确;
∵1,
∴b=2a,
∵a+b+c<0,
∴b+b+c<0,
∴3b+2c<0,
∴②正确;
∵当x=﹣2时,y>0,
∴4a﹣2b+c>0,
∴4a+c>2b,
③错误;
∵由图象可知x=﹣1时该二次函数取得最大值,
∴a﹣b+c>am2+bm+c(m≠﹣1).
∴m(am+b)<a﹣b.
故④正确
∴正确的有①②④三个,
故选:C.
【点睛】
本题考查二次函数图象与系数的关系,看懂图象,利用数形结合解题是关键.
7、C
【分析】
根据多项式的定义及项数、次数定义依次判断.
【详解】
解:A. 是多项式,故该项不符合题意;
B. 的项是,,1,故该项不符合题意;
C. 多项式的次数是5,故该项符合题意;
D. 的一次项系数是-4,故该项不符合题意;
故选:C.
【点睛】
此题考查了多项式的定义及项数的定义、次数的定义,正确掌握多项式的各定义是解题的关键.
8、A
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,据此可得结论.
【详解】
解:选项B、C、D均不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,
选项A能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,
故选:A.
【点睛】
本题主要考查了中心对称图形,掌握中心对称图形的定义是解题关键.
9、B
【分析】
取的中点,连接,交于点,则,,由,得,由,得,,则,,从而解决问题.
【详解】
解:矩形中,点,点分别是,的中点,
,,,
取的中点,连接,交于点,如图,
则是的中位线,
,,
,,
,
,
,
,
,
,,
,,
,,
,
,
故选:B.
【点睛】
本题主要考查了矩形的性质,相似三角形的判定与性质,利用相似三角形的性质表示出和的长是解题的关键.
10、C
【分析】
根据“上加下减”的原则进行解答即可.
【详解】
解:将抛物线y=2x2向下平移3个单位后的新抛物线解析式为:y=2x2-3.
故选:C.
【点睛】
本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.
二、填空题
1、2
【分析】
首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.
【详解】
解:移项,得:,
合并同类项,得:,
系数化成1得:,
则最大整数解是:2.
故答案是:2.
【点睛】
本题主要考查不等式的整数解,关键在于求解不等式.
2、
【分析】
根据二次根式的性质即可求出答案.
【详解】
解:原式=
=
故答案为:.
【点睛】
本题考查二次根式的性质与化简,解题的关键是熟练运用二次根式的除法运算法则,本题属于基础题型.
3、
【分析】
根据倒数的定义和绝对值的性质即可得出答案.
【详解】
解:的倒数是;绝对值等于3的数为±3,
故答案为:,±3.
【点睛】
此题考查了绝对值的性质、倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
4、
【分析】
过点A作AH⊥BC于点H,根据等腰直角三角形的性质可得DH=,CD=,再证明△ABF∽△DCA,进而对应边成比例即可求出FB的长.
【详解】
解:如图,过点A作AH⊥BC于点H,
∵∠BAC=90°,AB=AC=1,
∴BC=,
∵AH⊥BC,
∴BH=CH=,
∴AH=,
∵AD=DE=,
∴DH=,
∴CD=DH-CH=,
∵∠ABC=∠ACB=45°,
∴∠ABF=∠ACD=135°,
∵∠DAE=45°,
∴∠DAF=135°,
∵∠BAC=90°,
∴∠BAF+∠DAC=45°,
∵∠BAF+∠F=45°,
∴∠F=∠DAC,
∴△ABF∽△DCA,
∴,
∴,
∴BF=,
故答案为:.
【点睛】
本题考查了相似三角形的判定与性质,等腰直角三角形,解决本题的关键是得到△ABF∽△DAC.
5、4.57×106
【分析】
将一个数表示成a×10n,1≤a<10,n是正整数的形式,叫做科学记数法,根据此定义即可得出答案.
【详解】
解:根据科学记数法的定义,4570000=4.57×106,
故答案为:4.57×106.
【点睛】
本题主要考查科学记数法的概念,关键是要牢记科学记数法的形式.
三、解答题
1、
【分析】
根据二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值代入进行实数的运算即可
【详解】
【点睛】
本题考查了二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值,正确的计算是解题的关键.
2、
(1)①;②证明见详解;
(2),证明见详解.
【分析】
(1)①根据等腰直角三角形的性质可得,再由垂直的性质及直角三角形中两锐角互余即可得;
②由①可知:,,再根据等腰三角形的性质可得AD为CE的中垂线,由角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线)可得,利用等量代换得,由此即可证明;
(2)过点D作交AN的延长线于点F,AN和BC相交于点H,根据各角之间的数量关系可得,由平行线的性质及各角之间的等量代换得出,,
根据全等三角形的判定定理和性质可得,,再利用一次全等三角形的判定和性质可得,,由此即可得出结论.
(1)
解:①∵,,
∴,
∵,
∴,
∴;
②证明:如图所示:
由①可知:
,
∴,
∴,,
∵,
∴,,
∴AD为CE的中垂线,
∴,
∴,
∵EF平分,
∴,
∴,
∴CF平分;
(2)
解:过点D作交AN的延长线于点F,AN和BC相交于点H,
∵,
∴,,
∴,
即,
∵,
∴,
∴,
∵,
∴,
在与中,
,
∴,
∴,
∵,
∴,
∵,
∴,
在与中,
,
∴,
∴,
∴.
【点睛】
题目主要考查等腰三角形的判定和性质,中垂线的判定和性质,角平分线的定义,全等三角形的判定和性质等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
3、证明见解析
【分析】
由证明再结合已知条件证明从而可得答案.
【详解】
证明:,
EC=BD,AC=FD,
【点睛】
本题考查的是全等三角形的判定与性质,掌握“利用证明三角形全等 ”是解本题的关键.
4、(1),;(2)594元
【分析】
(1)若按个人票购买,则费用为元;若按团体票购买,该班师生买票共付费元;
(2)按学生32人购票,则可购买团体票,此时费用最小.
【详解】
解:(1),
所以若按个人票购买,该班师生买票共付费元;
,
所以若按团体票购买,该班师生买票共付费元;
故答案为:;;
(2)当按个人票购买时,元,
当按团体票购买时,,
所以该班师生买票最少可付费594元.
【点睛】
本题考查了代数式求值,解题的关键是列出代数式,根据求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.
5、
(1)150°
(2)9或27或45;
(3)t为、、、、
【分析】
(1)求出∠AOM及∠BON的度数可得答案;
(2)分两种情况:①当时,②当时,根据OA与OB重合前,OA与OB重合后,列方程求解;
(3)射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分有以下九种情况:
①OA分∠BOM为2:3时,②OA分∠BOM为3:2时,③OB分∠AOM为2:3时,④OB分∠AOM为3:2时,⑤OM分∠AOB为2:3时,⑥ OB分∠AOM为2:3时,⑦OB分∠AOM为3:2时,⑧ OA分∠BOM为3:2时,⑨ OA分∠BOM为2:3时,列方程求解并讨论是否符合题意.
(1)
解:当t=3时,∠AOM=12°,∠BON=18°,
∴∠AOB=180°-∠AOM-∠BON=150°,
故答案为:150°;
(2)
解:分两种情况:
①当时,
当OA与OB重合前,,得t=9;
当OA与OB重合后,,得t=27;
②当时,
当OA与OB重合前,,得t=45;
当OA与OB重合后,,得t=63(舍去);
故t的值为9或27或45;
(3)
解:射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分有以下九种情况:
①OA分∠BOM为2:3时,
∴4t:(180-4t-6t)=2:3,
解得:t=;
②OA分∠BOM为3:2时,
∴4t:(180-4t-6t)=3:2,
解得:t=;
③OB分∠AOM为2:3时,
∵,
∴,
得t=;
④OB分∠AOM为3:2时,
∴,
得t=;
⑤OM分∠AOB为2:3时,
∴,
得t=54,
此时>180°,故舍去;
⑥ OB分∠AOM为2:3时,
∴,
得,
此时,故舍去;
⑦OB分∠AOM为3:2时,
∴,
得,
此时,故舍去;
⑧ OA分∠BOM为3:2时,
∴,
得,
⑨ OA分∠BOM为2:3时,
∴,
得t=67.5(舍去)
综上,当t的值分别为、、、、时,射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分.
【点睛】
此题考查了角的计算,角的旋转,几何图形中角度的度数比,列一元一次方程,正确画出图形求角度值是解题的关键.
【真题汇总卷】2022年北京市通州区中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份【真题汇总卷】2022年北京市通州区中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共20页。试卷主要包含了已知圆O的半径为3,AB,的相反数是,要使式子有意义,则,下列命题正确的是等内容,欢迎下载使用。
【难点解析】2022年广东省广州市中考数学考前摸底测评 卷(Ⅱ)(含详解): 这是一份【难点解析】2022年广东省广州市中考数学考前摸底测评 卷(Ⅱ)(含详解),共22页。试卷主要包含了若+,如图所示,该几何体的俯视图是,下列说法正确的有,已知4个数等内容,欢迎下载使用。
【难点解析】2022年北京市中考数学考前摸底测评 卷(Ⅱ)(含答案解析): 这是一份【难点解析】2022年北京市中考数学考前摸底测评 卷(Ⅱ)(含答案解析),共22页。试卷主要包含了到三角形三个顶点距离相等的点是,的相反数是,如果与的差是单项式,那么,正八边形每个内角度数为等内容,欢迎下载使用。