【难点解析】2022年辽宁省丹东市中考数学模拟真题测评 A卷(精选)
展开2022年辽宁省丹东市中考数学模拟真题测评 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列格点三角形中,与右侧已知格点相似的是( )
A. B.
C. D.
2、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )
A. B. C. D.
3、下列说法中,正确的是( )
A.东边日出西边雨是不可能事件.
B.抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7.
C.投掷一枚质地均匀的硬币10000次,正面朝上的次数一定为5000次.
D.小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.
4、已知点、在二次函数的图象上,当,时,.若对于任意实数、都有,则的范围是( ).
A. B. C.或 D.
5、如图,点是以点为圆心,为直径的半圆上的动点(点不与点,重合),.设弦的长为,的面积为,则下列图象中,能表示与的函数关系的图象大致是( )
A. B. C. D.
6、如图,线段,延长到点,使,若点是线段的中点,则线段的长为( )
A. B. C. D.
7、如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC沿AC翻折,得到△ADC,再将△ADC沿AD翻折,得到△ADE,连接BE,则tan∠EBC的值为( )
A. B. C. D.
8、地球赤道的周长是40210000米,将40210000用科学记数法表示应为( )
A. B. C. D.
9、如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于点F,交AB于点G.有下列结论:①GA=GP;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④FP=FC,其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
10、如图,点是线段的中点,点是的中点,若,,则线段的长度是( )
A.3cm B.4cm C.5cm D.6cm
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如果点A(﹣1,3)、B(5,n)在同一个正比例函数的图像上,那么n=___.
2、计算:________°.
3、如图,正方形ABCD中,将边BC绕着点C旋转,当点B落在边AD的垂直平分线上的点E处时,∠AEC的度数为_______
4、已知f(x)=,那么f()=___.
5、幻方历史悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填入如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则a的值为________.
三、解答题(5小题,每小题10分,共计50分)
1、解方程(2x+1)2=x(2x+1).
2、已知正比例函数y=mx与反比例函数y=交于点(3,2)和点(3a﹣1,2﹣b).
(1)求正比例函数和反比例函数的解析式.
(2)求a、b的值.
3、定义:如图①.如果点D在的边上且满足.那么称点D为的“理根点”,如图②,在中,,如果点D是的“理想点”,连接.求的长.
4、如图,在的网格纸中,点O和点A都是格点,以O为圆心,OA为半径作圆.请仅用无刻度的直尺完成以下画图:(不写画法,保留作图痕迹.)
(1)在图①中画⊙O的一个内接正八边形ABCDEFGH;
(2)在图②中画⊙O的一个内接正六边形ABCDEF.
5、如图,是的角平分线,在的延长线上有一点D.满足.求证:.
-参考答案-
一、单选题
1、A
【分析】
根据题中利用方格点求出的三边长,可确定为直角三角形,排除B,C选项,再由相似三角形的对应边成比例判断A、D选项即可得.
【详解】
解:的三边长分别为:,
,,
∵,
∴为直角三角形,B,C选项不符合题意,排除;
A选项中三边长度分别为:2,4,,
∴,
A选项符合题意,
D选项中三边长度分别为:,,,
∴,
故选:A.
【点睛】
题目主要考查相似三角形的性质及勾股定理的逆定理,理解题意,熟练掌握运用相似三角形的性质是解题关键.
2、C
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:48500000科学记数法表示为:48500000=.
故答案为:.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
3、D
【分析】
根据概率的意义进行判断即可得出答案.
【详解】
解:A、东边日出西边雨是随机事件,故此选项错误;.
B、抛掷一枚硬币10次,7次正面朝上,则抛掷硬币正面朝上的概率为0.7,错误;有7次正面朝上,不能说明正面朝上的概率是0.7,随着实验次数的增多越来越接近于理论数值0.5,故C选项错误;
C、投掷一枚质地均匀的硬币10000次,正面朝上的次数可能为5000次,故此选项错误;
D、小红和同学一起做“钉尖向上”的实验,发现该事件发生的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618,此选项正确.
故选:D
【点睛】
此题主要考查了概率的意义,正确理解概率的意义是解题关键.
4、A
【分析】
先根据二次函数的对称性求出b的值,再根据对于任意实数x1、x2都有y1+y2≥2,则二次函数y=x2-4x+n的最小值大于或等于1即可求解.
【详解】
解:∵当x1=1、x2=3时,y1=y2,
∴点A与点B为抛物线上的对称点,
∴,
∴b=-4;
∵对于任意实数x1、x2都有y1+y2≥2,
∴二次函数y=x2-4x+n的最小值大于或等于1,
即,
∴c≥5.
故选:A.
【点睛】
本题考察了二次函数的图象和性质,对于二次函数y=ax2+bx+c(a,b,c为常数,a≠0),其对称轴是直线:,顶点纵坐标是,抛物线上两个不同点P1(x1,y1),P2(x2,y2),若有y1=y2,则P1,P2两点是关于抛物线对称轴对称的点,且这时抛物线的对称轴是直线:.
5、B
【分析】
由AB为圆的直径,得到∠C=90°,在Rt△ABC中,由勾股定理得到,进而列出△ABC面积的表达式即可求解.
【详解】
解:∵AB为圆的直径,
∴∠C=90°,
,,由勾股定理可知:
∴,
∴
此函数不是二次函数,也不是一次函数,
排除选项A和选项C,
为定值,当时,面积最大,
此时,
即时,最大,故排除,选.
故选:.
【点睛】
本题考查了动点问题的函数图象,根据题意列出函数表达式是解决问题的关键.
6、B
【分析】
先求出,再根据中点求出,即可求出的长.
【详解】
解:∵,
∴,,
∵点是线段的中点,
∴,
,
故选:B.
【点睛】
本题考查了线段中点有关的计算,解题关键是准确识图,理清题目中线段的关系.
7、A
【分析】
解:如图,连接,交于 过作于 先求解 设 再利用勾股定理构建方程组 ,再解方程组即可得到答案.
【详解】
解:如图,连接,交于 过作于
由对折可得:
设
解得: 或 (舍去)
故选A
【点睛】
本题考查的是轴对称的性质,勾股定理的应用,一元二次方程的解法,锐角的正切,作出适当的辅助线构建直角三角形是解本题的关键.
8、A
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数.本题小数点往左移动到4的后面,所以
【详解】
解:40210000
故选:A
【点睛】
本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
9、D
【分析】
①根据角平分线的性质和平行线的性质即可得到结论;
②根据角平分线的性质和三角形的面积公式即可求出结论;
③根据线段垂直平分线的性质即可得结果;
④根据角平分线的性质和平行线的性质即可得到结果.
【详解】
解:①∵AP平分∠BAC,
∴∠CAP=∠BAP,
∵PG∥AD,
∴∠APG=∠CAP,
∴∠APG=∠BAP,
∴GA=GP;
②∵AP平分∠BAC,
∴P到AC,AB的距离相等,
∴S△PAC:S△PAB=AC:AB,
③∵BE=BC,BP平分∠CBE,
∴BP垂直平分CE(三线合一),
④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上,
∴∠DCP=∠BCP,
又∵PG∥AD,
∴∠FPC=∠DCP,
∴∠FPC=∠BCP,
∴FP=FC,
故①②③④都正确.
故选:D.
【点睛】
本题主要考查了角平分线的性质和定义,平行线的性质,垂直平分线的判定,等腰三角形的性质,根据角平分线的性质和平行线的性质解答是解题的关键.
10、B
【分析】
根据中点的定义求出AE和AD,相减即可得到DE.
【详解】
解:∵D是线段AB的中点,AB=6cm,
∴AD=BD=3cm,
∵E是线段AC的中点,AC=14cm,
∴AE=CE=7cm,
∴DE=AE-AD=7-3=4cm,
故选B.
【点睛】
本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.
二、填空题
1、
【分析】
设过的正比例函数为: 求解的值及函数解析式,再把代入函数解析式即可.
【详解】
解:设过的正比例函数为:
解得:
所以正比例函数为:
当时,
故答案为:
【点睛】
本题考查的是利用待定系数法求解正比例函数的解析式,正比例函数的性质,熟练的利用待定系数法列方程是解本题的关键.
2、60.3
【分析】
根据1=()°先把18化成0.3°即可.
【详解】
∵
∴18=18=0.3°
∴6018=60.3
故:答案为60.3.
【点睛】
本题考查了度分秒的换算,单位度、分、秒之间是60进制,解题的关键是将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.在进行度、分、秒的运算时还应注意借位和进位的方法.
3、或
【分析】
分两种情况分析:当点E在BC下方时记点E为点,点E在BC上方时记点E为点,连接,,根据垂直平分线的性质得,,由正方形的性质得,,由旋转得,,故,是等边三角形,,是等腰三角形,由等边三角形和等腰三角形的求角即可.
【详解】
如图,当点E在BC下方时记点E为点,连接,
∵点落在边AD的垂直平分线,
∴,
∵四边形ABCD是正方形,
∴,
∵BC绕点C旋转得,
∴,
∴是等边三角形,是等腰三角形,
∴,,
∴,
∴,
当点E在BC上方时记点E为点,连接,
∵点落在边AD的垂直平分线,
∴,
∵四边形ABCD是正方形,
∴,,
∵BC绕点C旋转得,
∴,
∴是等边三角形,是等腰三角形,
∴,,
∴,
∴.
故答案为:或.
【点睛】
本题考查正方形的性质、垂直平分线的性质、旋转的性质,以及等边三角形与等腰三角形的判定与性质,掌握相关知识点的应用是解题的关键.
4、##
【分析】
把代入函数解析式进行计算即可.
【详解】
解:f(x)=,
故答案为:
【点睛】
本题考查的是已知自变量的值求解函数值,理解的含义是解本题的关键.
5、6
【分析】
根据每行,每列,对角线上的三个数之和相等,先确定9右边的数,再确定最中间的数,从而可得答案.
【详解】
解:∵每一横行数字之和是15,
∴最下面一行9右边的数字为15-4-9=2,
∵两条对角线上的数字之和是15,
∴中间的数字为15-8-2=5,
∴4+5+a=15,
解得a=6,
故答案为:6.
【点睛】
本题主要考查一元一次方程的应用,根据每一横行,每一竖行以及两条对角线上的数字之和都是15得出中间的数是解题的关键.
三、解答题
1、
【分析】
先移项,再提取公因式 利用因式分解法解方程即可.
【详解】
解:(2x+1)2=x(2x+1)
即
或
解得:
【点睛】
本题考查的是利用因式分解法解一元二次方程,掌握“提取公因式分解因式,再化为两个一次方程”是解本题的关键.
2、
(1)正比例函数为: 反比例函数为:
(2)
【分析】
(1)把点(3,2)代入两个函数解析式,利用待定系数法求解解析式即可;
(2)由正比例函数y=mx与反比例函数y=交于点(3,2)和点(3a﹣1,2﹣b),可得关于原点成中心对称,再列方程组解方程即可得到答案.
(1)
解: 正比例函数y=mx与反比例函数y=交于点(3,2),
解得:
所以正比例函数为: 反比例函数为:
(2)
解: 正比例函数y=mx与反比例函数y=交于点(3,2)和点(3a﹣1,2﹣b),
关于原点成中心对称,
解得:,
【点睛】
本题考查的是利用待定系数法求解正比例函数与反比例函数的解析式,反比例函数的中心对称性,掌握“正比例函数y=mx与反比例函数y=的交点关于原点成中心对称”是解本题的关键.
3、.
【分析】
只要证明CD⊥AB即可解决问题.
【详解】
解:如图②中,
∵点D是△ABC的“理想点”,
∴∠ACD=∠B,
∵,
∴,
∴,
,
在Rt△ABC中,
,
∴BC= ,
∵,
.
【点睛】
本解考查了直角三角形判定和性质,理解新定义是解本题的关键.
4、
(1)见解析
(2)见解析
【分析】
(1)在图①中画⊙O的一个内接正八边形ABCDEFGH即可;
(2)在图②中画⊙O的一个内接正六边形ABCDEF即可.
(1)
解:如图,正八边形ABCDEFGH即为所求:
(2)
解:如图,正六边形ABCDEF即为所求:
【点睛】
本题考查了作图-应用与设计作图、正多边形和圆,解决本题的关键是准确画图.
5、见解析
【分析】
根据是的角平分线和,可得∠ABE=∠D,从而得到△ABE∽△CDE,进而得到 ,即可求证.
【详解】
证明:∵是的角平分线,
∴∠ABE=∠CBD,
∵,
∴∠D=∠CBD,
∴∠ABE=∠D,
∵∠AEB=∠CED,
∴△ABE∽△CDE,
∴ ,
∵,
∴.
【点睛】
本题主要考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握有两对角相等的两个三角形相似是解题的关键.
真题解析河北省中考数学模拟真题测评 A卷(精选): 这是一份真题解析河北省中考数学模拟真题测评 A卷(精选),共31页。试卷主要包含了如图,E,下列现象,抛物线的顶点为等内容,欢迎下载使用。
【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选): 这是一份【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选),共21页。试卷主要包含了下列各式,下列说法正确的是.,不等式+1<的负整数解有,计算12a2b4•÷的结果等于,分式方程有增根,则m为等内容,欢迎下载使用。
【真题汇编】中考数学模拟专项测评 A卷(精选): 这是一份【真题汇编】中考数学模拟专项测评 A卷(精选),共20页。试卷主要包含了下列式中,与是同类二次根式的是等内容,欢迎下载使用。