高中数学北师大版 (2019)必修 第一册2.2 分层随机抽样课时训练
展开分层随机抽样
(建议用时:40分钟)
一、选择题
1.已知某公司按照工作年限发放年终奖并且进行年终表彰.若该公司有工作10年以上的员工100人,工作5~10年的员工400人,工作0~5年的员工200人,现按照工作年限进行分层随机抽样,在公司的所有员工中抽取28人作为员工代表上台接受表彰,则工作5~10年的员工代表有( )
A.8人 B.16人
C.4人 D.24人
B [依题意知,该公司的所有员工中工作10年以上、工作5~10年、工作0~5年的员工人数之比为1∶4∶2,故工作5~10年的员工代表有28×=16人,故选B.]
2.当前,国家正分批修建经济适用房以解决低收入家庭住房紧张的问题.已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户.若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,先采用分层随机抽样的方法决定各社区户数,则应从甲社区中抽取低收入家庭的户数为( )
A.40 B.30
C.20 D.36
A [由题意可知90×=40.]
3.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.
方法1:采用简单随机抽样的方法,将零件编号00,01,02,…,99,用抽签法抽取20个.
方法2:采用分层随机抽样的方法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.
对于上述问题,下列说法正确的是( )
①不论采用哪种抽样方法,这100个零件中每一个零件被抽到的可能性都是;
②采用不同的方法,这100个零件中每一个零件被抽到的可能性各不相同;
③在上述两种抽样方法中,方法2抽到的样本比方法1抽到的样本更能反映总体特征;
④在上述抽样方法中,方法1抽到的样本比方法2抽到的样本更能反映总体的特征.
A.①② B.①③
C.①④ D.②③
B [根据两种抽样的特点知,不论哪种抽样,总体中每个个体入样的可能性都相等,都是,故①正确,②错误.由于总体中有差异较明显的三个层(一级品、二级品和三级品),故方法2抽到的样本更有代表性,③正确,④错误.故①③正确.]
4.在1 000个球中有红球50个,从中抽取100个进行分析,如果用分层随机抽样的方法对球进行抽样,则应抽红球( )
A.33个 B.20个
C.5个 D.10个
C [设应抽取红球x个,由=,得x=5.]
5.为了保证分层随机抽样时每个个体等可能地被抽取,必须要求( )
A.每层不等可能抽样
B.每层抽取的个体数相等
C.每层抽取的个体可以不一样多,但必须满足抽取ni=n(i=1,2,…,k)个个体(其中i是层数,n是抽取的样本容量,Ni是第i层中个体的个数,N是总体的容量)
D.只要抽取的样本容量一定,每层抽取的个体数没有限制
C [A不正确.B中由于每层的容量不一定相等,每层抽同样多的个体数,显然从整个总体来看,各层之间的个体被抽取的可能性就不一样了,因此B也不正确.C中对于第i层的每个个体,它被抽到的可能性与层数无关,即对于每个个体来说,被抽取的可能性是相同的,故C正确.D不正确.]
二、填空题
6.某学院的A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取________名学生.
40 [C专业的学生有1 200-380-420=400(名),由分层随机抽样原理,应抽取120×=40(名).]
7.一支田径队有男、女运动员98人,其中男运动员有56人.按男、女比例用分层随机抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员的人数是________.
12 [抽取女运动员的人数为×28=12.]
8.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层随机抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.
15 [高二年级学生人数占总数的,样本容量为50,则50×=15.]
三、解答题
9.一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人.为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?
[解] 用分层随机抽样来抽取样本,步骤如下:
(1)分层.按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工.
(2)确定每层抽取个体的个数.抽样比为=,则在不到35岁的职工中抽取125×=25(人);
在35岁至49岁的职工中抽取280×=56(人);
在50岁及50岁以上的职工中抽取95×=19(人).
(3)在各层分别按简单随机抽样的方法抽取样本.
(4)汇总每层抽样,组成样本.
10.某高级中学共有学生3 000名,各年级男、女生人数如下表:
| 高一年级 | 高二年级 | 高三年级 |
女生 | 487 | x | y |
男生 | 513 | 560 | z |
已知从全校学生中随机抽取1名学生,抽到高二年级女生的概率是0.18.
(1)问高二年级有多少名女生?
(2)现对各年级用分层随机抽样的方法从全校抽取300名学生,问应从高三年级抽取多少名学生?
[解] (1)由=0.18得x=540,所以高二年级有540名女生.
(2)高三年级人数为:y+z=3 000-(487+513+540+560)=900.
∴×300=90,故应从高三年级抽取90名学生.
11.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层随机抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )
A.4 B.5
C.6 D.7
C [分层随机抽样中,分层抽取时都按相同的抽样比来抽取,本题中抽样比为=,因此植物油类应抽取10×=2(种),果蔬类食品应抽取20×=4(种),因此从植物油类和果蔬类食品中抽取的种数之和为2+4=6.]
12.厂家生产的1 200件产品是由三台机器生产的,其中甲机器生产240件,乙机器生产360件,丙机器生产600件,用分层随机抽样的方法抽取一个容量为30的样本检查这批产品的合格率,则丙机器生产的产品应抽取件数为 ( )
A.6 B.9
C.15 D.10
C [因为三台机器生产的产品数量之比是240∶360∶600=2∶3∶5,所以应该从丙机器生产的产品中抽取的件数是30×=15.]
13.有甲、乙两种产品共120件,现按一定的比例用分层随机抽样的方法共抽取10件进行产品质量调查,如果所抽取的甲产品的数量是乙产品的2倍还多1件,那么甲、乙产品的总件数分别为______、______.
84 36 [设抽取乙产品x件,则抽取甲产品2x+1件,由x+(2x+1)=10,得x=3.
∴2x+1=7.∴共有甲产品120×=84(件),乙产品120×=36(件).]
14.某公司生产三种型号的轿车,产量分别为1 200辆,6 000辆和2 000辆.为检验该公司的产品质量,现用分层随机抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取的辆数为________.
6,30,10 [设三种型号的轿车依次抽取x辆,y辆,z辆,则有
解得故填6,30,10.]
15.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工只能参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%;登山组的职工占参加活动总人数的,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层的职工对本次活动的满意程度,现用分层随机抽样的方法从参加活动的全体职工中抽取容量为200的样本.试求:
(1)游泳组中,青年人、中年人、老年人分别所占的比例;
(2)游泳组中,青年人、中年人、老年人分别应抽取的人数.
[解] (1)设登山组人数为x,游泳组中,青年人、中年人、老年人各占比例分别为a,b,c,
则有=47.5%,=10%.
解得b=50%,c=10%.
故a=1-50%-10%=40%.
即游泳组中,青年人、中年人、老年人各占的比例分别为40%,50%,10%.
(2)游泳组中,抽取的青年人人数为200××40%=60;
抽取的中年人人数为200××50%=75;
抽取的老年人人数为200××10%=15.
高中数学北师大版 (2019)必修 第一册3 频率与概率当堂检测题: 这是一份高中数学北师大版 (2019)必修 第一册3 频率与概率当堂检测题,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学北师大版 (2019)必修 第一册2.2 分层随机抽样精练: 这是一份高中数学北师大版 (2019)必修 第一册2.2 分层随机抽样精练,共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
高中数学北师大版 (2019)必修 第一册第六章 统计2 抽样的基本方法2.1 简单随机抽样练习题: 这是一份高中数学北师大版 (2019)必修 第一册第六章 统计2 抽样的基本方法2.1 简单随机抽样练习题,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。