初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试随堂练习题
展开这是一份初中数学北京课改版七年级下册第四章 一元一次不等式和一元一次不等式组综合与测试随堂练习题,共19页。试卷主要包含了已知,为实数,下列说法等内容,欢迎下载使用。
七年级数学下册第四章一元一次不等式和一元一次不等式组定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、有两个正数a,b,且a<b,把大于等于a且小于等于b的所有数记作[a,b].例如,大于等于1且小于等于4的所有数记作[1,4].若整数m在[5,15]内,整数n在[﹣30,﹣20]内,那么的一切值中属于整数的个数为( )
A.6个 B.5个 C.4个 D.3个
2、若a+b+c=0,且|a|>|b|>|c|,则下列结论一定正确的是( )
A.abc>0 B.abc<0 C.ac>ab D.ac<ab
3、不等式x+2<0的解在数轴上的表示正确的是( )
A. B.
C. D.
4、已知关于的不等式组的整数解共有个,则的取值范围是( )
A. B. C. D.
5、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为( )
A.24人 B.23人 C.22人 D.不能确定
6、如果,m,这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是( )
A. B. C. D.
7、已知,为实数,下列说法:①若,且,互为相反数,则;②若,,则;③若,则;④若,则是正数;⑤若,且,则,其中正确的说法有 个.A.2 B.3 C.4 D.5
8、不符式的解集在数轴上表示正确的是( )
A. B.
C. D.
9、若m>n,则下列选项中不成立的是( )
A.m+4>n+4 B.m﹣4>n﹣4 C. D.﹣4m>﹣4n
10、在数轴上点A,B对应的数分别是a,b,点A在表示﹣3和﹣2的两点之间(包括这两点)移动,点B在表示﹣1和0的两点(包括这两点)之间移动,则以下四个代数式的值可能比2021大的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、初三的几位同学拍了一张合影作为留念,已知拍一张底片需要 5 元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数至少为__________.
2、 “x的3倍减去的差是一个非负数”,用不等式表示为_____________.
3、若x<y,且(6﹣a)x>(6﹣a)y,则a的取值范围是 ______.
4、当x_________时,代数式的值不大于x+1的值.
5、若a>0,则关于x的不等式ax>b的解集是________;若a<0,则关于x的不等式以ax>b的解集是_______.
三、解答题(5小题,每小题10分,共计50分)
1、已知x<y,比较下列各对数的大小.
(1)8x-3和8y-3;
(2)和;
(3) x-2和y-1.
2、根据“a的2倍与1的差是负数”列出不等式:_________.
3、不等式组的解集是关于的一元一次不等式解集的一部分,求的取值范围.
4、某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.
5、解不等式(组)
(1)
(2)
---------参考答案-----------
一、单选题
1、B
【解析】
【分析】
根据已知条件得出5≤m≤15,−30≤n≤−20,再得出的范围,即可得出整数的个数.
【详解】
解:∵m在[5,15]内,n在[−30,−20]内,
∴5≤m≤15,−30≤n≤−20,
∴−≤≤,即−6≤≤−,
∴的一切值中属于整数的有−2,−3,−4,−5,−6,共5个;
故选:B.
【点睛】
此题考查了不等式组的应用,求出5≤m≤15和−30≤n≤−20是解题的关键.
2、C
【解析】
【分析】
由的绝对值最小,分析不符合题意,再由 分析可得中至少有一个负数,至多两个负数,再分情况讨论即可得到答案.
【详解】
解: a+b+c=0,且|a|>|b|>|c|,
当时,则 则 不符合题意;
从而:中至少有一个负数,至多两个负数,
当 且|a|>|b|>|c|,
此时B,C成立,A,D不成立,
当 且|a|>|b|>|c|,
此时A,C成立,B,D不成立,
综上:结论一定正确的是C,
故选C
【点睛】
本题考查的是绝对值的含义,有理数的和的符号的确定,有理数积的符号的确定,利用数轴表示有理数,扎实的基础知识是解题的关键.
3、D
【解析】
【分析】
先求出不等式的解集,再在数轴上表示出来即可.
【详解】
解:移项得,x<﹣2,
在数轴上表示为:,
故选:D.
【点睛】
本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.
4、A
【解析】
【分析】
先分别求出每个不等式的解集,然后确定不等式组的解集,最后根据整数解的个数确定的范围.
【详解】
解:
解不等式①得:x,
解不等式②得:x<,
∴不等式组的解集是<x<,
∵原不等式组的整数解有3个为1,0,-1,
∴-2≤<-1.
故选择:A.
【点睛】
本题考查了解一元一次不等式、解一元一次不等式组、不等式组的整数解的应用,确定不等式组的解集是解答本题的关键.
5、C
【解析】
【分析】
根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x为整数.
【详解】
解:设每组预定的学生数为x人,由题意得,
解得
是正整数
故选:C.
【点睛】
本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键.
6、C
【解析】
【分析】
如果2m,m,这三个实数在数轴上所对应的点从左到右依次排列,则可得三个数的大小关系,列出相应的不等式组进行求解,然后根据确定不等式组解集方法(同大取大,同小取小),即可解得m的范围.
【详解】
解:根据题意得:
,
解①得:,
解②得:,
解③得:,
∴m的取值范围是.
故选:C.
【点睛】
题目主要考查不等式组的应用及解法,理解题意,列出相应的不等式组,熟练掌握确定不等式组解集的方法是解题关键.
7、C
【解析】
【分析】
①除0外,互为相反数的商为,可作判断;
②由两数之和小于0,两数之积大于0,得到与都为负数,即小于0,利用负数的绝对值等于它的相反数化简得到结果,即可作出判断;
③由的绝对值等于它的相反数,得到为非正数,得到与的大小,即可作出判断;
④由绝对值大于绝对值,分情况讨论,即可作出判断;
⑤先根据,得,由和有理数乘法法则可得,,分情况可作判断.
【详解】
解:①若,且,互为相反数,则,本选项正确;
②若,则与同号,由,则,,则,本选项正确;
③,即,
,即,本选项错误;
④若,
当,时,可得,即,,所以为正数;
当,时,,,所以为正数;
当,时,,,所以为正数;
当,时,,,所以为正数,
本选项正确;
⑤,
,
,
,,
当时,,
,不符合题意;
所以,,
,
则,
本选项正确;
则其中正确的有4个,是①②④⑤.
故选:.
【点睛】
本题考查了相反数,不等式的性质,绝对值和有理数的混合运算,熟练掌握各种运算法则是解本题的关键.
8、D
【解析】
【分析】
先求出不等式的解集,再根据解集在数轴上的表示方法表示即可.
【详解】
解:,
解得:,
在数轴上表示解集为:
,
故选:D.
【点睛】
题目主要考查了求不等式的解集,在数轴上表示不等式的解集,掌握数轴上表示不等式解集的方法是解题的关键.
9、D
【解析】
【分析】
根据不等式的基本性质进行解答即可.
【详解】
解:∵m>n,
A、m+4>n+4,成立,不符合题意;
B、m﹣4>n﹣4,成立,不符合题意;
C、,成立,不符合题意;
D、﹣4m﹣4n,原式不成立,符合题意;
故选:D.
【点睛】
本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解本题的关键.
10、C
【解析】
【分析】
根据已知条件得出,,,求出,,,,再分别求出每个式子的范围,根据式子的范围即可得出答案.
【详解】
,,
,,,,,
,故A选项不符合题意;
,故B选项不符合题意;
可能比2021大,故C选项符合题意;
,故D选项不符合题意;
故选:C.
【点睛】
本题考查数轴、倒数、有理数的混合运算,求出每个式子的范围是解题的关键.
二、填空题
1、6人
【解析】
【分析】
根据题意得出不等关系,即平均每人分摊的钱不足1.5元,由此列一元一次不等式求解即可.
【详解】
解:设参加合影的同学人数为x人,
由题意得:5+0.5x<1.5x,
解得:x>5,
∵x取正整数,
∴参加合影的同学人数至少为6人.
故答案为:6人.
【点睛】
本题考查了一元一次不等式的应用,弄清题意,准确找出不等关系是解题的关键.
2、
【解析】
【分析】
根据题中的不等量关系列出不等式即可.
【详解】
解:根据题意列不等式为:,
故答案为:.
【点睛】
本题考查了一元一次不等式的应用,解题的关键是根据题中所给的不等量关系列出一元一次不等式.
3、a>6
【解析】
【分析】
根据不等式的基本性质,发现不等式的两边都乘(6﹣a)后,不等号的方向改变了,说明(6﹣a)是负数,从而得出答案.
【详解】
解:根据题意得:6﹣a<0,
∴a>6,
故答案为:a>6.
【点睛】
本题考查了不等式的基本性质,掌握①不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;②不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键.
4、≥-2
【解析】
【分析】
先根据题意列出关于x的不等式,再根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.
【详解】
解:根据题意,得:≤x+1,
去分母,得:1+2x≤3x+3,
移项,得:2x-3x≤3-1,
合并同类项,得:-x≤2,
系数化为1,得:x≥-2,
故答案为:≥-2.
【点睛】
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
5、
【解析】
【分析】
根据不等式的性质,两边同时除以一个正数,不等号方向不变;两边同时除以一个负数,不等号方向改变,由此即可得出解集.
【详解】
解:当时,
,两边同时除以a可得:
;
当时,
,两边同时除以a可得:
;
故答案为:①;②.
【点睛】
题目主要考查根据不等式的基本性质求不等式解集,熟练掌握不等式的基本性质是解题关键.
三、解答题
1、(1)8x-3<8y-3;(2);(3)x-2<y-1
【解析】
【分析】
(1)根据不等式的基本性质:不等式两边同时乘以一个正数,不等号不变号,不等式两边同时加上或减去一个数,不等号方向不变,即可得;
(2)根据不等式的基本性质:不等式两边同时乘以一个负数,不等号变号,不等式两边同时加上或减去一个数,不等号方向不变,即可得;
(3)根据不等式的基本性质:不等式两边同时加上或减去一个数,不等号方向不变,即可得.
【详解】
解:(1)∵ ,
∴ ,
∴ ;
(2)∵ ,
∴ ,
∴ ;
(3)∵ ,
∴ ,而,
∴ .
【点睛】
题目主要考查不等式的基本性质,熟练掌握不等式的各个性质是解题关键.
2、2a﹣1<0
【解析】
【分析】
根据题意列出不等式即可.
【详解】
解:由题意得:2a﹣1<0,
故答案为:2a﹣1<0.
【点睛】
此题主要考查列不等式,解题的关键是根据题意找到不等关系.
3、
【解析】
【分析】
先求出不等式组的解集为,然后分别讨论当时,当时,当时,不等式的解集,然后根据不等式组的解集是关于的一元一次不等式解集的一部分进行求解即可.
【详解】
解:
解不等式①得:,
解不等式②得:,
∴不等式的解集为,
∵,
∴当时,
∵不等式组的解集是关于的一元一次不等式解集的一部分,
∴,
∴;
同理当时,,
∵不等式组的解集是关于的一元一次不等式解集的一部分,
∴,
∴;
当时,恒成立,即关于的一元一次不等式的解集为一切实数,
∴此时也满足不等式组的解集是关于的一元一次不等式解集的一部分,
∴综上所述,.
【点睛】
本题主要考查了解一元一次不等式和解一元一次不等式组,解题的关键在于能够熟练掌握解不等式的方法.
4、
【解析】
【分析】
根据矩形的周长公式及面积的计算方法,结合不等关系:面积大于平方米,周长小于米列出不等式组求解即可.
【详解】
∵矩形的面积大于平方米,周长小于米,矩形的一边长为,临边长为
∴
【点睛】
本题考查了一元一次不等式组的应用,读懂题意正确列出不等式组是解题关键.
5、(1);(2)
【解析】
【分析】
(1)根据解不等式的基本步骤求解即可;
(2)先求得每一个不等式的解集,后确定出解集即可.
【详解】
(1)∵ ,
∴,
∴,
∴;
(2)
由①:,
由②:,
.
【点睛】
本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键.
相关试卷
这是一份数学七年级下册第六章 整式的运算综合与测试练习题,共18页。试卷主要包含了把多项式按的降幂排列,正确的是,不一定相等的一组是,计算的结果是,下列运算正确的是,下列表述正确的是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第六章 整式的运算综合与测试习题
这是一份初中数学北京课改版七年级下册第六章 整式的运算综合与测试课后作业题,共18页。试卷主要包含了下列说法正确的是,下列计算正确的是,下列各式中,计算正确的是,下列表述正确的是,已知下列一组数等内容,欢迎下载使用。