【难点解析】2022年陕西省宝鸡市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解)
展开
这是一份【难点解析】2022年陕西省宝鸡市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共24页。
2022年陕西省宝鸡市中考数学备考真题模拟测评 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若方程有实数根,则实数a的取值范围是( )A. B.C.且 D.且2、方程的解是( ).A. B. C., D.,3、下列关于x的二次三项式在实数范围内不能够因式分解的是( )A.x2﹣3x+2 B.2x2﹣2x+1 C.2x2﹣xy﹣y2 D.x2+3xy+y24、一张正方形纸片经过两次对折,并在如图所示的位置上剪去一个小正方形,打开后的图形是( )A. B. C. D.5、根据以下程序,当输入时,输出结果为( )A. B. C. D.6、、两地相距,甲骑摩托车从地匀速驶向地.当甲行驶小时途径地时,一辆货车刚好从地出发匀速驶向地,当货车到达地后立即掉头以原速匀速驶向地.如图表示两车与地的距离和甲出发的时间的函数关系.则下列说法错误的是( )A.甲行驶的速度为 B.货车返回途中与甲相遇后又经过甲到地C.甲行驶小时时货车到达地 D.甲行驶到地需要7、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )A.冬 B.奥 C.运 D.会8、如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将△ABC沿AC翻折,得到△ADC,再将△ADC沿AD翻折,得到△ADE,连接BE,则tan∠EBC的值为( )A. B. C. D.9、在一次“寻宝”游戏中,寻宝人已经找到两个标志点和,并且知道藏宝地点的坐标是,则藏宝处应为图中的( )A.点 B.点 C.点 D.点10、如果一个矩形的宽与长的比等于黄金数(约为0.618),就称这个矩形为黄金矩形.若矩形ABCD为黄金矩形,宽AD=﹣1,则长AB为( )A.1 B.﹣1 C.2 D.﹣2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,OA1B1,A1A2B2,A2A3B3,⋯是分别以A1,A2,A3,…,为直角顶点且一条直角边在x轴正半轴上的等腰直角三角形,其斜边中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…,均在反比例函数的图象上,则C1的坐标是_;y1+y2+y3+…+y2022的值为___.2、计算:________°.3、在不等式组的解集中,最大的整数解是______.4、已知三点(a,m)、(b,n)和(c,t)在反比例函数y=(k>0)的图像上,若a<0<b<c,则m、n和t的大小关系是 ___.(用“<”连接)5、若关于x的二次三项式是完全平方式,则k=____.三、解答题(5小题,每小题10分,共计50分)1、如图,是的角平分线,在的延长线上有一点D.满足.求证:.2、如图,在中,D是边的中点,过点B作交的延长线于点E,点N是线段上一点,连接交于点M,且.(1)若,,求的度数;(2)求证:.3、在数轴上,表示数m与n的点之间的距离可以表示为|m﹣n|.例如:在数轴上,表示数﹣3与2的点之间的距离是5=|﹣3﹣2|,表示数﹣4与﹣1的点之间的距离是3=|﹣4﹣(﹣1)|.利用上述结论解决如下问题:(1)若|x﹣5|=3,求x的值;(2)点A、B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a﹣b|=6(b>a),点C表示的数为﹣2,若A、B、C三点中的某一个点是另两个点组成的线段的中点,求a、b的值.4、在平面直角坐标系中,对于点和,给出如下定义:若,则称点为点的“可控变点”例如:点的“可控变点”为点,点的“可控变点”为点.(1)点的“可控变点”坐标为 ;(2)若点在函数的图象上,其“可控变点” 的纵坐标是7,求“可控变点” 的横坐标:(3)若点在函数的图象上,其“可控变点” 的纵坐标的取值范围是,求的值.5、如图,在中,,D是延长线上的一点,E是上的一点.连接.如果.求证:. -参考答案-一、单选题1、B【分析】若方程为一元二次方程,则有,,求解;若,方程为一元一次方程,判断有实数根,进而求解取值范围即可.【详解】解:若方程为一元二次方程,则有,解得且若,方程为一元一次方程,有实数根故选B.【点睛】本题考查了一元二次方程根的判别,一元一次方程的根.解题的关键在于全面考虑的情况.2、C【分析】先提取公因式x,再因式分解可得x(x-1)=0,据此解之可得.【详解】解:,x(x-1)=0,则x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了一元二次方程的解法,掌握用因式分解法解一元二次方程是关键.3、B【分析】利用十字乘法把选项A,C分解因式,可判断A,C,利用一元二次方程根的判别式计算的值,从而可判断B,D,从而可得答案.【详解】解: 故A不符合题意;令 所以在实数范围内不能够因式分解,故B符合题意; 故C不符合题意;令 所以在实数范围内能够因式分解,故D不符合题意;故选B【点睛】本题考查的是利用十字乘法分解因式,一元二次方程的根的判别式的应用,掌握“利用一元二次方程根的判别式判断二次三项式在实数范围内能否分解因式”是解本题的关键.4、A【分析】由平面图形的折叠及图形的对称性展开图解题.【详解】由第一次对折后中间有一个矩形,排除B、C;由第二次折叠矩形正在折痕上,排除D;故选:A.【点睛】本题考查的是学生的立体思维能力及动手操作能力,关键是由平面图形的折叠及图形的对称性展开图解答.5、C【分析】根据流程图所示顺序,逐框分析代入求值即可.【详解】解:当输入时,代入代入,则输出故选C【点睛】本题考查了程序流程图与代数式求值,正确代入求值是解题的关键.6、C【分析】根据函数图象结合题意,可知两地的距离为,此时甲行驶了1小时,进而求得甲的速度,即可判断A、D选项,根据总路程除以速度即可求得甲行驶到地所需要的时间,根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,据此判断B选项,求得相遇时,甲距离地的距离,进而根据货车行驶的路程除以时间即可求得货车的速度,进而求得货车到达地所需要的时间.【详解】解:两地的距离为,故A选项正确,不符合题意;故D选项正确,不符合题意;根据货车行驶的时间和路程结合图像可得第小时时货车与甲相遇,则即货车返回途中与甲相遇后又经过甲到地故B选项正确,相遇时为第4小时,此时甲行驶了,货车行驶了则货车的速度为则货车到达地所需的时间为即第小时故甲行驶小时时货车到达地故C选项不正确故选C【点睛】本题考查了一次函数的应用,弄清楚函数图象中各拐点的意义是解题的关键.7、D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“京”与“奥”是相对面,“冬”与“运”是相对面,“北”与“会”是相对面.故选:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.8、A【分析】解:如图,连接,交于 过作于 先求解 设 再利用勾股定理构建方程组 ,再解方程组即可得到答案.【详解】解:如图,连接,交于 过作于 由对折可得: 设 解得: 或 (舍去) 故选A【点睛】本题考查的是轴对称的性质,勾股定理的应用,一元二次方程的解法,锐角的正切,作出适当的辅助线构建直角三角形是解本题的关键.9、B【分析】结合题意,根据点的坐标的性质,推导得出原点的位置,再根据坐标的性质分析,即可得到答案.【详解】∵点和,∴坐标原点的位置如下图:∵藏宝地点的坐标是∴藏宝处应为图中的:点故选:B.【点睛】本题考查了坐标与图形,解题的关键是熟练掌握坐标的性质,从而完成求解.10、C【分析】根据黄金矩形的定义,得出宽与长的比例即可得出答案.【详解】解:黄金矩形的宽与长的比等于黄金数,,.故选:C.【点睛】本题考查新定义题型,给一个新的定义,根据定义来解题,对于这道题是基础题型.二、填空题1、 【分析】过、、…分别作x轴的垂线,垂足分别为、、…,故是等腰直角三角形,从而求出的坐标;由点是等腰直角三角形的斜边中点,可以得到的长,然后再设未知数,表示点的坐标,确定,代入反比例函数的关系式,建立方程解出未知数,表示点的坐标,确定,……然后再求和.【详解】过、、…分别作x轴的垂线,垂足分别为、、…,则,∵是等腰直角三角形,∴,∴,∴,其斜边的中点在反比例函数,∴,即,∴,∴,设,则,此时,代入得:,解得:,即:,同理:,,……,∴故答案为:,.【点睛】本题考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,掌握相关知识点之间的应用是解题的关键.2、60.3【分析】根据1=()°先把18化成0.3°即可.【详解】∵∴18=18=0.3°∴6018=60.3故:答案为60.3.【点睛】本题考查了度分秒的换算,单位度、分、秒之间是60进制,解题的关键是将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.在进行度、分、秒的运算时还应注意借位和进位的方法.3、4【分析】先求出不等式的解集,再求出不等式组的解集,找出不等式组的最大整数解即可.【详解】解: ,解不等式①得,x≥2,解不等式②得, ,∴不等式组的解集为,∴不等式组的最大整数解为4.故答案为:4.【点睛】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.4、【分析】先画出反比例函数y=(k>0)的图象,在函数图象上描出点(a,m)、(b,n)和(c,t),再利用函数图象可得答案.【详解】解:如图,反比例函数y=(k>0)的图像在第一,三象限,而点(a,m)、(b,n)和(c,t)在反比例函数y=(k>0)的图像上,a<0<b<c, 即 故答案为:【点睛】本题考查的是反比例函数的图象与性质,掌握“利用数形结合比较反比例函数值的大小”是解本题的关键.5、﹣3或1【分析】根据这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可.【详解】解:∵二次三项式是完全平方式,∴=或=,∴或,解得k=﹣3或k=1,故答案为:﹣3或1.【点睛】本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键.三、解答题1、见解析【分析】根据是的角平分线和,可得∠ABE=∠D,从而得到△ABE∽△CDE,进而得到 ,即可求证.【详解】证明:∵是的角平分线,∴∠ABE=∠CBD,∵,∴∠D=∠CBD,∴∠ABE=∠D,∵∠AEB=∠CED,∴△ABE∽△CDE,∴ ,∵,∴.【点睛】本题主要考查了相似三角形的判定和性质,等腰三角形的性质,熟练掌握有两对角相等的两个三角形相似是解题的关键.2、(1)(2)证明见解析【分析】(1)先根据平行线的性质可得,再根据三角形的外角性质即可得;(2)先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,,从而可得,然后根据等腰三角形的性质、对顶角相等可得,从而可得,最后根据等腰三角形的判定即可得证.(1)解:∵,,∴,∵,∴.(2)证明:∵,∴,∵是边的中点,∴,在和中,,∴,∴,,∵,∴,∴,∴,∴.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的判定与性质等知识点,熟练掌握各判定定理与性质是解题关键.3、(1)x=8或x=2(2)a=﹣5,b=1或a=4,b=10或a=﹣14,b=﹣8【分析】(1)根据两点间的距离公式和绝对值的意义,可得答案;(2)分类讨论:①C是AB的中点,②当点A为线段BC的中点,③当点B为线段AC的中点,根据线段中点的性质,可得答案.(1)解:因为|x﹣5|=3,所以x﹣5=3或x﹣5=﹣3,解得x=8或x=2;(2)因为|a﹣b|=6(b>a),所以在数轴上,点B与点A之间的距离为6,且点B在点A的右侧.①当点C为线段AB的中点时,如图1所示,.∵点C表示的数为﹣2,∴a=﹣2﹣3=﹣5,b=﹣2+3=1.②当点A为线段BC的中点时,如图2所示,AC=AB=6.∵点C表示的数为﹣2,∴a=﹣2+6=4,b=a+6=10.③当点B为线段AC的中点时,如图3所示,BC=AB=6.∵点C表示的数为﹣2,∴b=﹣2﹣6=﹣8,a=b﹣6=﹣14.综上,a=﹣5,b=1或a=4,b=10或a=﹣14,b=﹣8.【点睛】本题考查了数轴上两点间的距离,线段的中点,以及一元一次方程的应用,注意数轴上到一点距离相等的点有两个,分类讨论是解(2)题关键.4、(1)(2)“可控变点” 的横坐标为3或(3)【分析】(1)根据可控变点的定义,可得答案;(2)根据可控变点的定义,可得函数解析式,根据自变量与函数值得对应关系,可得答案;(3)根据可控变点的定义,可得函数解析式,根据自变量与函数值得对应关系,结合图象可得答案.(1),,即点的“可控变点”坐标为;(2)由题意,得的图象上的点的“可控变点”必在函数的图象上,如图1, “可控变点” 的纵坐标的是7,当时,解得,当时,解得,故答案为:3或;(3)由题意,得y=-x2+16的图象上的点P的“可控变点”必在函数y′= 的图象上,如图2,当x=-5时,x2-16=9,∴-16<y′=x2-16≤9(x<0),∴y′=-16在y′=-x2+16(x≥0)上,∴-16=-x2+16,∴x=4,∴实数a的值为4.【点睛】本题考查了新定义,二次函数的图象与性质,利用可控变点的定义得出函数解析式是解题关键,又利用了自变量与函数值的对应关系.5、见解析【分析】由垂直可得,根据相似三角形的判定定理直接证明即可.【详解】证明:∵,∴, 在和中,∵,∴.【点睛】题目主要考查相似三角形的判定定理,熟练掌握相似三角形的判定是解题关键.
相关试卷
这是一份【真题汇编】2022年陕西省宝鸡市中考数学备考模拟练习 (B)卷(含答案详解),共20页。试卷主要包含了下列二次根式中,不能与合并的是等内容,欢迎下载使用。
这是一份【真题汇编】2022年陕西省宝鸡市中考数学模拟测评 卷(Ⅰ)(含答案及详解),共19页。
这是一份【难点解析】2022年湖南省隆回县中考数学备考真题模拟测评 卷(Ⅰ)(含答案及详解),共20页。试卷主要包含了下列说法正确的有,若,则值为,定义一种新运算,到三角形三个顶点距离相等的点是等内容,欢迎下载使用。