【难点解析】2022年四川省德阳市中考数学模拟考试 A卷(含答案及解析)
展开· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2022年四川省德阳市中考数学模拟考试 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,点P是▱ABCD边AD上的一点,E,F分别是BP,CP的中点,已知▱ABCD面积为16,那么△PEF的面积为( )
A.8 B.6 C.4 D.2
2、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为( )
A.10 B.12 C.15 D.18
3、如图,中,,,,,平分,如果点,分别为,上的动点,那么的最小值是( )
A.6 B.8 C.10 D.4.8
4、若,,且a,b同号,则的值为( )
A.4 B.-4 C.2或-2 D.4或-4
5、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )
A. B.四边形EFGH是菱形
C. D.
6、若+(3y+4)2=0,则yx的值为( )
A. B.- C.- D.
7、人类的遗传物质是DNA,其中最短的22号染色体含 30000000个核苷酸,30000000用科学记数法表示为( )
A.3×106 B.3×107 C.3×108 D.0.3×108
8、下列计算正确的是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A. B. C. D.
9、如图,点A的坐标为,点B是x轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A. B.
C. D.
10、下列关于整式的说法错误的是( )
A.单项式的系数是-1 B.单项式的次数是3
C.多项式是二次三项式 D.单项式与ba是同类项
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在实数①,②π,③2.131131113,④,⑤0,⑥中,无理数是_____(填序号).
2、己知等腰三角形两条边长分别是4和10,,则此三角形的周长是___________________
3、我国元朝朱世杰所著的《算学启蒙》中有这样的记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,良马数日追及之”.如果设良马x日追上驽马,根据题意,可列方程为______,x的值为______.
4、如图,AC=12cm,AB=5cm,点D是BC的中点,那么CD=________________cm.
5、背面完全相同的四张卡片,正面分别写着数字-4,-1,2,3,背面朝上并洗匀,从中随机抽取一张,将卡片上的数字记为,再从余下的卡片中随机抽取一张,将卡片上的数字记为,则点在第四象限的概率为__________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点D是边AC上的动点,以CD为边在△ABC外作正方形CDEF,分别联结AE、BE,BE与AC交于点G
(1)当AE⊥BE时,求正方形CDEF的面积;
(2)延长ED交AB于点H,如果△BEH和△ABG相似,求sin∠ABE的值;
(3)当AG=AE时,求CD的长.
2、一次数学测试,小明做试卷用小时,检查试卷用去小时,这时离测试结束还有小时,这次测试规定时间是多少小时?
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、对于平面直角坐标系xOy中的图形M,N,给出如下定义:若图形M和图形N有且只有一个公共点P,则称点P是图形M和图形N的“关联点”.
已知点,,,.
(1)直线l经过点A,的半径为2,在点A,C,D中,直线l和的“关联点”是______;
(2)G为线段OA中点,Q为线段DG上一点(不与点D,G重合),若和有“关联点”,求半径r的取值范围;
(3)的圆心为点,半径为t,直线m过点A且不与x轴重合.若和直线m的“关联点”在直线上,请直接写出b的取值范围.
4、疫情期间,小明到口罩厂参加社会实践活动,了解到以下关于口罩生产的信息:无纺布的市场价为13000元/吨,熔喷布的市场价为14700元/吨,2吨无纺布与1吨熔喷布能生产110万片口罩.另外生产口罩的辅料信息(说明:每片口罩需要一只鼻梁条、两条耳带)如表所示:
鼻梁条
耳带
成本
90元/箱
230元/箱
制作配件数目
25000只/箱
100000只/箱
(1)生产110万片口罩需要鼻梁条 箱,耳带 箱;
(2)小明了解到生产和销售口罩的过程中还需支出电费、员工工资、机器损耗及应缴纳的税款等费用.经过统计小明发现每片口罩还需支出上述费用大约0.1548元,求每片口罩的成本是多少元?
(3)为控制疫情蔓延,口罩厂接到上级下达的用不超过7天紧急生产销售44万片口罩的任务.经市场预测,100片装大包销售,每包价格为45.8元;10片装小包销售,每包价格为5.8元.该厂每天可包装800大包或2000小包(同一天两种包装方式不能同时进行),且每天需要另外支付2000元费用(不足一天按照一天计费).为在规定时间内完成任务且获得最大利润,该厂设计了三种备选方案,
方案一:全部大包销售;
方案二:全部小包销售;
方案三:同时采用两种包装方式且恰好用7天完成任务.
请你通过计算,为口罩厂做出决策.
5、在数轴上,点A表示,点B表示20,动点P、Q分别从A、B两点同时出发.
(1)如图1,若P、Q相向而行6秒后相遇,且它们的速度之比是2:3(速度单位:1个单位长度/秒),则点P的速度为 个单位长度/秒,点Q的速度为 个单位长度/秒;
(2)如图2,若在原点O处放一块挡板.P、Q均以(1)中的速度同时向左运动,点Q在碰到挡板后(忽略球的大小)改变速度并向相反方向运动,设它们的运动时间为t(秒),试探究:
①若点Q两次经过数轴上表示12的点的间隔是5秒,求点Q碰到挡板后的运动速度;
②若点Q碰到挡板后速度变为原速度的2倍,求运动过程中P、Q两点到原点距离相等的时间t.
-参考答案-
一、单选题
1、D
【分析】
根据平行线间的距离处处相等,得到,根据EF是△PBC的中位线,得到△PEF∽△PBC,EF=,得到计算即可.
【详解】
∵点P是▱ABCD边AD上的一点,且 ▱ABCD面积为16,
∴;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵E,F分别是BP,CP的中点,
∴EF∥BC,EF=,
∴△PEF∽△PBC,
∴,
∴,
故选D.
【点睛】
本题考查了平行四边形的性质,三角形中位线定理,三角形相似的判定和性质,熟练掌握中位线定理,灵活运用三角形相似的性质是解题的关键.
2、C
【分析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可.
【详解】
解:由题意可得,
,
解得,a=15.
经检验,a=15是原方程的解
故选:C.
【点睛】
本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据白球的频率得到相应的等量关系.
3、D
【分析】
如图所示:过点作于点,交于点,过点作于点,则,此时最小,再利用等面积法求解最小值即可.
【详解】
解:如图所示:
过点作于点,交于点,
过点作于点,
平分,
,
.
在中,,,,,,
,
,
.
即的最小值是4.8,
故选:D.
【点睛】
本题考查的是垂线段最短,角平分线的性质定理的应用,等面积法的应用,确定取最小值· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
时点的位置是解本题的关键.
4、D
【分析】
根据绝对值的定义求出a,b的值,根据a,b同号,分两种情况分别计算即可.
【详解】
解:∵|a|=3,|b|=1,
∴a=±3,b=±1,
∵a,b同号,
∴当a=3,b=1时,a+b=4;
当a=-3,b=-1时,a+b=-4;
故选:D.
【点睛】
本题考查了绝对值,有理数的加法,考查分类讨论的数学思想,知道a,b同号分两种:a,b都是正数或都是负数是解题的关键.
5、C
【分析】
由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.
【详解】
解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.
∵AB和AE都是⊙O的切线,点G、H分别是切点,
∴AG=AH,∠GAF=∠HAF,
∴∠GAF=∠HAF=∠DAE=30°,
∴∠BAE=2∠DAE,故A正确,不符合题意;
延长EF与AB交于点N,如图:
∵OF⊥EF,OF是⊙O的半径,
∴EF是⊙O的切线,
∴HE=EF,NF=NG,
∴△ANE是等边三角形,
∴FG//HE,FG=HE,∠AEF=60°,
∴四边形EFGH是平行四边形,∠FEC=60°,
又∵HE=EF,
∴四边形EFGH是菱形,故B正确,不符合题意;
∵AG=AH,∠GAF=∠HAF,
∴GH⊥AO,故D正确,不符合题意;
在Rt△EFC中,∠C=90°,∠FEC=60°,
∴∠EFC=30°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴EF=2CE,
∴DE=2CE.
∵在Rt△ADE中,∠AED=60°,
∴AD=DE,
∴AD=2CE,故C错误,符合题意.
故选C.
【点睛】
本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.
6、A
【分析】
根据绝对值的非负性及偶次方的非负性得到x-2=0,3y+4=0,求出x、y的值代入计算即可
【详解】
解:∵+(3y+4)2=0,
∴x-2=0,3y+4=0,
∴x=2,y=,
∴,
故选:A.
【点睛】
此题考查了已知字母的值求代数式的值,正确掌握绝对值的非负性及偶次方的非负性是解题的关键.
7、B
【分析】
用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.
【详解】
解:30000000=3×107.
故选:B.
【点睛】
本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.
8、D
【分析】
先确定各项是否为同类项(所含字母相同,相同字母指数也相同的项),如为同类项根据合并同类项法则(只把系数相加减,字母和字母的指数不变)合并同类项即可.
【详解】
A. ,故A选项错误;
B. ,不是同类项,不能合并,故错误;
C. ,故C选项错误;
D. ,故D选项正确.
故选:D.
【点睛】
本题考查合并同类项,合并同类项时先确定是否为同类项,如是同类项再根据字母和字母的指数不变,系数相加合并同类项.
9、A
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.
【详解】
解:作AD∥x轴,作CD⊥AD于点D,如图所示,
由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,
∵AD∥x轴,
∴∠DAO+∠AOB=180°,
∴∠DAO=90°,
∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
∴∠OAB=∠DAC,
在△OAB和△DAC中
,
∴△OAB≌△DAC(AAS),
∴OB=CD,
∴CD=x,
∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,
∴y=x+1(x>0).
故选:A.
【点睛】
本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.
10、C
【分析】
根据单项式系数和次数的定义,多项式的定义,同类项的定义逐一判断即可.
【详解】
解:A、单项式的系数是-1,说法正确,不符合题意;
B、单项式的次数是3,说法正确,不符合题意;
C、多项式是三次二项式,说法错误,符合题意;
D、单项式与ba是同类项,说法正确,不符合题意;
故选C.
【点睛】
本题主要考查了单项式的次数、系数的定义,多项式的定义,同类项的定义,解题的关键在于能够熟知相关定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数;同类项的定义:如果两个单项式所含的字母相同,相同字母的指数也相同,那么这两个单项式就叫做同类项.
二、填空题
1、②④
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
根据无理数是无限不循环小数进行判断即可.
【详解】
解:①﹣是分数,属于有理数;
②π是无理数;
③2.131131113是有限小数,属于有理数;
④是无理数;
⑤0是整数,属于有理数;
⑥=﹣2是有理数;
故答案为:②④.
【点睛】
本题考查了有理数与无理数的定义与分类.解题的关键在于正确理解有理数与无理数的定义与分类.
2、24
【分析】
分两种情考虑:腰长为4,底边为10;腰长为10,底边为4.根据这两种情况即可求得三角形的周长.
【详解】
当腰长为4,底边为10时,因4+4<10,则不符合构成三角形的条件,此种情况不存在;
当腰长为10,底边为4时,则三角形的周长为:10+10+4=24.
故答案为:24
【点睛】
本题考查了等腰三角形的性质及周长,要注意分类讨论.
3、240x=150× (12+x) 20
【分析】
设良马x日追上驽马,根据驽马先行的路程=两马速度之差×良马行走天数,即可列出关于x的一元一次方程,解之即可.
【详解】
解:设良马x日追上驽马,
由题意,得240x=150× (12+x).
解得:x=20,
故答案为:240x=150× (12+x),20.
【点睛】
本题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
4、
【分析】
首先根据线段的和差求出BC的长,再利用线段的中点可得CD.
【详解】
∵AC=12cm,AB=5cm,
∴BC=AC﹣AB=7cm,
∵点D是BC的中点,
∴CD=BC=cm.
故答案为:.
【点睛】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查线段的和差,掌握线段中点的定义是解题关键.
5、
【分析】
第四象限点的特征是,所以当横坐标只能为2或3,纵坐标只能是或,画出列表图或树状图,算出满足条件的情况,进一步求得概率即可.
【详解】
如下图:
-4
-1
2
3
-4
-1
2
3
∵第四象限点的坐标特征是,
∴满足条件的点分别是: ,共4种情况,
又∵从列表图知,共有12种等可能性结果,
∴点在第四象限的概率为.
故答案为:
【点睛】
本题主要考察概率的求解,要熟悉树状图或列表图的要点是解题关键.
三、解答题
1、
(1)
(2)
(3)
【分析】
(1)证明△ADE≌△BFE(ASA),推出AD=BF,构建方程求出CD即可.
(2)过点A作AM⊥BE于M,想办法求出AB,AM即可解决问题.
(3)如图3中,延长CA到N,使得AN=AG.设CD=DE=EF=CF=x,则AD=12﹣x,DN=BF=5+x,在Rt△ADE中,利用勾股定理求出x即可解决问题.
(1)
如图1中,
∵四边形ABCD是正方形,
∴CD=DE=EF=CF,∠CDE=∠DEF=∠F=90°,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵AE⊥BE,
∴∠AEB=∠DEF=90°,
∴∠AED=∠BEF,
∵∠ADE=∠F=90°,DE=FE,
∴△ADE≌△BFE(ASA),
∴AD=BF,
∴AD=5+CF=5+CD,
∵AC=CD+AD=12,
∴CD+5+CD=12,
∴CD=,
∴正方形CDEF的面积为.
(2)
如图2中,
∵∠ABG=∠EBH,
∴当∠BAG=∠BEH=∠CBG时,△ABG∽△EBH,
∵∠BCG=∠ACB,∠CBG=∠BAG,
∴△CBG∽△CAB,
∴=CG•CA,
∴CG=,
∴BG===,
∴AG=AC﹣CG=,
过点A作AM⊥BE于M,
∵∠BCG=∠AMG=90°,∠CGB=∠AGM,
∴∠GAM=∠CBG,
∴cos∠GAM=cos∠CBG=,
∴AM=,
∵AB==13,
∴sin∠ABM=.
(3)
如图3中,延长CA到N,使得AN=AG.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∵AE=AG=AN,
∴∠GEN=90°,
由(1)可知,△NDE≌△BFR,
∴ND=BF,
设CD=DE=EF=CF=x,则AD=12﹣x,DN=BF=5+x,
∴AN=AE=5+x﹣(12﹣x)=2x﹣7,
在Rt△ADE中,
∵,
∴,
∴x=或(舍弃),
∴CD=.
【点睛】
本题考查了正方形的性质,勾股定理,三角形的全等,三角形相似的性质和判定,一元二次方程的解法,三角函数的正弦值,熟练掌握勾股定理,准确解一元二次方程,正弦值是解题的关键.
2、这次测试规定时间是小时.
【分析】
根据题意列出算式,计算即可求出值.
【详解】
解:由题意得:
=
=(小时)
【点睛】
此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.
3、
(1)C
(2)
(3)
【分析】
(1)作出图形,根据切线的定义结合“关联点”即可求解;
(2)根据题意,为等边三角形,则仅与相切时,和有“关联点”,进而求得半径r的取值范围;
(3)根据关联点以及切线的性质,直径所对的角是直角,找到点的运动轨迹是以为圆心半径为的半圆在轴上的部分,进而即可求得的值.
(1)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:如图,
,,,,
,轴,.
的半径为2,
直线与相切
直线l和的“关联点”是点
故答案为:
(2)
如图,根据题意与有“关联点”,则与相切,且与相离
,
是等边三角形
为的中点,则
当与相切时,则点为的内心
半径r的取值范围为:
(3)
如图,设和直线m的“关联点”为,,交轴于点,
是的切线,
的圆心为点,半径为t,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
轴是的切线
点的运动轨迹是以为圆心半径为的半圆在轴上的部分,则点,
在直线上,
当直线与相切时,即当点与点重合时,最大,
此时与轴交于点,
当点运动到点时,则过点,
则
解得
b的取值范围为:
【点睛】
本题考查了切线的性质与判定,切线长定理,勾股定理,一次函数与坐标轴交点问题,等边三角形的性质,等边三角形的内心的性质,掌握以上知识是解题的关键.
4、
(1)44,22
(2)0.2元
(3)选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利
【分析】
(1)利用口罩片数×1÷25000;利用口罩片数×2÷100000;
(2)无纺布的市场价13000元/吨×2+熔喷布的市场价14700元/吨×1+44箱×90+22箱×230求出总费用.利用总费用÷110万+0.1548即可;
(3)方案一:先确定天数天<7.然后口罩包数×45.8-6天费用-成本=利润;方案二:先确定天数天>7天(舍去).;方案三:刚好7天,确定每类加工天数,列一元一次方程设包装小包的天数为x,根据等量关系小包口罩片数×每天完成包数×天数x+大包口罩片数×每天完成包数×(7-小包天数x)=44万,列方程,解方程求出 .再计算利润=小包数×单价+大包数×单价-其它-成本计算,然后比较利润大小即可
(1)
解:鼻梁条:1100000÷25000=44箱;耳带:1100000×2÷100000=22箱,
故答案为44;22;
(2)
解:(元).
(元).
(元).
答:每片口罩的成本是0.2元.
(3)
方案一:全部大包销售:
天.
∴
(元).
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学 级年 名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
方案二:全部小包销售:
天>7天(舍去).
方案三:设包装小包的天数为x,
由题意得:.
解得:.
∴(片).
∴,
=23200+183200-12000-88000,
,
(元).
∵,
∴选择方案三.
答:选择方案三,即同时采用两种包装方式且恰好用7天完成任务销售更有利.
【点睛】
本题考查有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,掌握有理数的乘除混合运算在生活中运用,一元一次方程的应用,方案设计,仔细阅读题目,分析好各种数据,选择计算方法与应用计算的法则是解题关键.
5、
(1)2,3
(2)①12个单位长度/秒;②2秒或秒
【分析】
(1)设P、Q的速度分别为2x,3x,由两点路程之和=两点之间的距离,列方程即可求解;
(2)解:①点Q第一次经过表示12的点开始到达原点用时4秒,再次到达表示12的点用时1秒,即可求解;
②分两种情况:当P、Q都向左运动时和当Q返回向右运动时即可求解.
(1)
解:设P、Q的速度分别为2x,3x,
由题意,得:6(2x+3x)=20-(-10),
解得:x=1,
故2x=2,3x=3,
故答案为:2,3;
(2)
解:①,.
答:点Q碰到挡板后的运动速度为12个单位长度/秒.
②当P、Q都向左运动时,
解得:.
当Q返回向右运动时,
解得:.
答:P、Q两点到原点距离相等时经历的时间为2秒或秒.
【点睛】
本题考查了数轴上两点的距离、数轴上点的表示、一元一次方程的应用,比较复杂,要认真理清题意,并注意数轴上的点,原点左边表示负数,右边表示正数,在数轴上,两点的距离等于任意两点表示的数的差的绝对值.
2022年四川省德阳市中考数学试卷(含答案解析): 这是一份2022年四川省德阳市中考数学试卷(含答案解析),共20页。试卷主要包含了某同学本次比赛的各项成绩分别是,25倍.,【答案】C,【答案】B,【答案】D,【答案】A等内容,欢迎下载使用。
【难点解析】最新中考数学模拟考试 A卷(含答案及详解): 这是一份【难点解析】最新中考数学模拟考试 A卷(含答案及详解),共24页。试卷主要包含了若,则的值为等内容,欢迎下载使用。
【难点解析】2022年四川省德阳市中考数学三年真题模拟 卷(Ⅱ)(含详解): 这是一份【难点解析】2022年四川省德阳市中考数学三年真题模拟 卷(Ⅱ)(含详解),共22页。试卷主要包含了若+,有下列说法等内容,欢迎下载使用。