【真题汇编】2022年广东省佛山市禅城区中考数学二模试题(含详解)
展开2022年广东省佛山市禅城区中考数学二模试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、根据表中的信息判断,下列语句中正确的是( )
15 | 15.1 | 15.2 | 15.3 | 15.4 | 15.5 | 15.6 | 15.7 | 15.8 | 15.9 | 16 | |
225 | 228.01 | 231.04 | 234.09 | 237.16 | 240.25 | 243.36 | 246.49 | 249.64 | 252.81 | 256 |
A.
B.235的算术平方根比15.3小
C.只有3个正整数满足
D.根据表中数据的变化趋势,可以推断出将比256增大3.19
2、下列关于x的二次三项式在实数范围内不能够因式分解的是( )
A.x2﹣3x+2 B.2x2﹣2x+1 C.2x2﹣xy﹣y2 D.x2+3xy+y2
3、已知,则∠A的补角等于( )
A. B. C. D.
4、已知的两个根为、,则的值为( )
A.-2 B.2 C.-5 D.5
5、根据以下程序,当输入时,输出结果为( )
A. B. C. D.
6、已知点与点关于y轴对称,则的值为( )
A.5 B. C. D.
7、在实数,,0.1010010001…,,中无理数有( )
A.4个 B.3个 C.2个 D.1个
8、如图,点是线段的中点,点是的中点,若,,则线段的长度是( )
A.3cm B.4cm C.5cm D.6cm
9、下列各数中,是无理数的是( )
A.0 B. C. D.3.1415926
10、下列说法正确的是( )
A.任何数的绝对值都是正数 B.如果两个数不等,那么这两个数的绝对值也不相等
C.任何一个数的绝对值都不是负数 D.只有负数的绝对值是它的相反数
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,直线,如果,,,那么线段BE的长是_____________.
2、如图,在中,AB=AC=6,BC=4,点D在边AC上,BD=BC,那么AD的长是______
3、抛物线与x轴的两个交点之间的距离为4,则t的值是______.
4、计算:=___.
5、如果点A(﹣1,3)、B(5,n)在同一个正比例函数的图像上,那么n=___.
三、解答题(5小题,每小题10分,共计50分)
1、已知点,则点到轴的距离为______,到轴的距离为______.
2、已知在平面直角坐标系中,拋物线与轴交于点和点,与轴交于点 ,点是该抛物线在第一象限内一点,联结与线段相交于点.
(1)求抛物线的表达式;
(2)设抛物线的对称轴与线段交于点,如果点与点重合,求点的坐标;
(3)过点作轴,垂足为点与线段交于点,如果,求线段的长度.
3、如图,平面直角坐标系中,已知点,,,是的边上任意一点,经过平移后得到△,点的对应点为.
(1)直接写出点,,的坐标.
(2)在图中画出△.
(3)连接,,,求的面积.
(4)连接,若点在轴上,且三角形的面积为8,请直接写出点的坐标.
4、如图,一次函数的图象交反比例函数的图象于,两点.
(1)求反比例函数与一次函数解析式.
(2)连接,求的面积.
(3)根据图象直接回答:当为何值时,一次函数的值大于反比例函数的值?
5、如图,直线与x,y轴分别交于点B,A,抛物线过点A.
(1)求出点A,B的坐标及c的值;
(2)若函数在时有最小值为,求a的值;
(3)当时,在抛物线上是否存在点M,使得,若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
-参考答案-
一、单选题
1、C
【分析】
根据算术平方根的定义及表格中信息逐项分析即可.
【详解】
A.根据表格中的信息知:,
,故选项不正确;
B.根据表格中的信息知:,
∴235的算术平方根比15.3大,故选项不正确;
C.根据表格中的信息知:,
正整数或242或243,
只有3个正整数满足,故选项正确;
D.根据表格中的信息无法得知的值,
不能推断出将比256增大3.19,故选项不正确.
故选:C.
【点睛】
本题是图表信息题,考查了算术平方根,关键是正确利用表中信息.
2、B
【分析】
利用十字乘法把选项A,C分解因式,可判断A,C,利用一元二次方程根的判别式计算的值,从而可判断B,D,从而可得答案.
【详解】
解: 故A不符合题意;
令
所以在实数范围内不能够因式分解,故B符合题意;
故C不符合题意;
令
所以在实数范围内能够因式分解,故D不符合题意;
故选B
【点睛】
本题考查的是利用十字乘法分解因式,一元二次方程的根的判别式的应用,掌握“利用一元二次方程根的判别式判断二次三项式在实数范围内能否分解因式”是解本题的关键.
3、C
【分析】
若两个角的和为 则这两个角互为补角,根据互补的含义直接计算即可.
【详解】
解: ,
∠A的补角为:
故选C
【点睛】
本题考查的是互补的含义,掌握“利用互补的含义,求解一个角的补角”是解本题的关键.
4、B
【分析】
直接运用一元二次方程根与系数的关系求解即可.
【详解】
解:∵的两个根为、,
∴
故选:B
【点睛】
本题主要考查了一元二次方程根与系数的关系,若、为一元二次方程的两个实数根,则有,.
5、C
【分析】
根据流程图所示顺序,逐框分析代入求值即可.
【详解】
解:当输入时,
代入
代入,则输出
故选C
【点睛】
本题考查了程序流程图与代数式求值,正确代入求值是解题的关键.
6、A
【分析】
点坐标关于轴对称,横坐标互为相反数,纵坐标相等,可求得的值,进而可求的值.
【详解】
解:由题意知:
解得
∴
故选A.
【点睛】
本题考查了关于轴对称的点坐标的关系,代数式求值等知识.解题的关键在于理解关于轴对称的点坐标,横坐标互为相反数,纵坐标相等.
7、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:,是整数,属于有理数;
是分数,属于有理数;
无理数有0.1010010001…,,,共3个.
故选:B.
【点睛】
此题考查了无理数的定义.解题的关键是掌握无理数的定义,注意初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
8、B
【分析】
根据中点的定义求出AE和AD,相减即可得到DE.
【详解】
解:∵D是线段AB的中点,AB=6cm,
∴AD=BD=3cm,
∵E是线段AC的中点,AC=14cm,
∴AE=CE=7cm,
∴DE=AE-AD=7-3=4cm,
故选B.
【点睛】
本题考查了中点的定义及两点之间的距离的求法,准确识图是解题的关键.
9、B
【分析】
无限不循环小数叫做无理数,有限小数或无限循环小数叫做有理数,根据无理数的定义即可作出判断.
【详解】
A.0是整数,属于有理数,故本选项不合题意;
B.是无理数,故本选项符合题意;
C.是分数,属于有理数,故本选项不合题意;
D.3.1415926是有限小数,属于有理数,故本选项不合题意;
故选:B.
【点睛】
本题考查了无理数,掌握无理数的含义是解题的关键.
10、C
【分析】
数轴上表示数的点与原点的距离是数的绝对值,非负数的绝对值是它的本身,非正数的绝对值是它的相反数,互为相反数的两个数的绝对值相等,再逐一分析各选项即可得到答案.
【详解】
解:任何数的绝对值都是非负数,故A不符合题意;
如果两个数不等,那么这两个数的绝对值可能相等,也可能不相等,比方 但 故B不符合题意;
任何一个数的绝对值都不是负数,表述正确,故C符合题意;
非正数的绝对值是它的相反数,故D不符合题意;
故选C
【点睛】
本题考查的是绝对值的含义,求解一个数的绝对值,掌握“绝对值的含义”是解本题的关键.
二、填空题
1、3
【分析】
过点D作DG∥AC交CF于点G,交BE于点H,根据,可得,四边形ABHD和四边形ACGD是平行四边形,从而得到BH=AD=CG=2, ,进而得到FG=4,再由BE∥CF,得到△DEH∽△DFG,从而得到HE=1,即可求解.
【详解】
解:如图,过点D作DG∥AC交CF于点G,交BE于点H,
∵,
∴,四边形ABHD和四边形ACGD是平行四边形,
∴BH=AD=CG=2, ,
∵,
∴FG=4,
∵BE∥CF,
∴△DEH∽△DFG,
∴ ,
∴HE=1,
∴BE=BH+HE=3.
故答案为:3
【点睛】
本题主要考查了平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定,熟练掌握平行线分线段成比例,平行四边形的判定和性质,相似三角形的性质和判定是解题的关键.
2、
【分析】
根据等腰三角形的等边对等角可得∠ABC=∠C=∠BDC,根据相似三角形的判定证明△ABC∽△BDC,根据相似三角形的性质求解即可.
【详解】
解:∵AB=AC,BD=BC,
∴∠ABC=∠C,∠C=∠BDC,
∴△ABC∽△BDC,
∴,
∵AB=AC=6,BC=4,BD=BC,
∴,
∴,
∴AD=AC-CD=6-=,
故答案为:.
【点睛】
本题考查等腰三角形的性质、相似三角形的判定与性质,熟练掌握等腰三角形的性质和相似三角形的判定与性质是解答的关键.
3、
【分析】
设抛物线与x轴的两个交点的横坐标为 则是的两根,且 再利用两个交点之间的距离为4列方程,再解方程可得答案.
【详解】
解:设抛物线与x轴的两个交点的横坐标为
是的两根,且
两个交点之间的距离为4,
解得: 经检验:是原方程的根且符合题意,
故答案为:
【点睛】
本题考查的是二次函数与轴的交点坐标,两个交点之间的距离,掌握“求解二次函数与轴的交点坐标”是解本题的关键.
4、
【分析】
先把除法转化为乘法,再计算即可完成.
【详解】
故答案为:
【点睛】
本题考查了二次根式的乘除混合运算,注意运算顺序不要出错.
5、
【分析】
设过的正比例函数为: 求解的值及函数解析式,再把代入函数解析式即可.
【详解】
解:设过的正比例函数为:
解得:
所以正比例函数为:
当时,
故答案为:
【点睛】
本题考查的是利用待定系数法求解正比例函数的解析式,正比例函数的性质,熟练的利用待定系数法列方程是解本题的关键.
三、解答题
1、2 3
【分析】
点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值,据此即可得答案.
【详解】
∵点的坐标为,
∴点到轴的距离为,到轴的距离为.
故答案为:2;3
【点睛】
本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.
2、
(1)
(2)
(3)
【分析】
(1)将点和点代入,即可求解;
(2)分别求出和直线的解析式为,可得,,再求直线的解析式为,联立,即可求点;
(3)设,则,则,用待定系数法求出直线的解析式为,联立,可求出,,直线与轴交点,则,再由,可得,则有方程,求出,即可求.
(1)
解:将点和点代入,
,
,
;
(2)
解:,
对称轴为直线,
令,则,
解得或,
,
设直线的解析式为,
,
,
,
,,
设直线的解析式为,
,
,
,
联立,
或(舍,
;
(3)
解:
设,则,
,
设直线的解析式为,
,
,
,
联立,
,
,,
直线与轴交点,
,
,
,
轴,
,
,
,
,
,
,
,
.
【点睛】
本题是二次函数的综合题,解题的关键是熟练掌握二次函数的图象及性质,会求二次函数的交点坐标,本题计算量较大,准确的计算也是解题的关键.
3、
(1),,
(2)见解析
(3)的面积=6
(4)或
【分析】
(1)利用P点和P1的坐标特征得到平移的方向与距离,然后利用此平移规律写出点A1,B1,C1的坐标;
(2)利用点A1,B1,C1的坐标描点即可;
(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△AOA1的面积;
(4)设Q(0,t),利用三角形面积公式得到×8×|t−1|=8,然后解方程求出t得到Q点的坐标.
(1)
解:,,;
(2)
解:如图,△为所作;
(3)
解:的面积
,
,
;
(4)
解:设,
,,
,
三角形的面积为8,
,解得或,
点的坐标为或.
【点睛】
本题考查了作图−平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.
4、
(1),;
(2)15;
(3)0<x<2或x>8.
【分析】
(1)先把点A的坐标代入,求出m的值得到反比例函数解析式,再求点B的坐标,然后代入反比例函数解析式求出点B的坐标,再将A、B两点的坐标代入y=kx+b,利用待定系数法求出一次函数的解析式;
(2)先求出C点坐标,再根据△AOB的面积=△AOC的面积-三角形BOC的面积即可求解;
(3)观察函数图象即可求得.
(1)
解:把A(2,-4)的坐标代入得:m=-8,
∴反比例函数的解析式是;
把B(a,-1)的坐标代入得:-1=,
解得:a=8,
∴B点坐标为(8,-1),
把A(2,-4)、B(8,-1)的坐标代入y=kx+b,得:,
解得: ,
∴一次函数解析式为;
(2)
解:设直线AB交x轴于C.
∵,
∴当y=0时,x=10,
∴OC=10,
∴△AOB的面积=△AOC的面积-三角形BOC的面积
=;
(3)
解:由图象知,当0<x<2或x>8时,一次函数的值大于反比例函数的值.
【点睛】
本题主要考查了反比例函数图象与一次函数图象的交点问题以及观察图象的能力,待定系数法求函数解析式,求出点B的坐标是解题的关键.
5、
(1)A(0,1),B(-2,0),c=1.
(2)5或.
(3),,
【分析】
(1)根据两轴的特征可求y=x+1与x轴,y轴的交点坐标,然后将点A坐标代入抛物线解析式即可;
(2)将抛物线配方为顶点式,根据抛物线开口向上与向下两种情况,当a>0,在—1≤x≤4时,抛物线在顶点处取得最小值,当x=1时,y有最小值, 当a<0,在—1≤x≤4时,离对称轴越远函数值越小,即可求解;
(3)存在符合条件的M点的坐标, 当时,抛物线解析式为:,设点P在y轴上,使△ABP的面积为1,点P(0,m),, 求出点P2(0,0),或P1(0,2),,可得点M在过点P与AB平行的两条直线上,①过点P2与 AB平行直线的解析式为:,联立方程组,解方程组得出,,②过点P1与AB平行的直线解析式为:,联立方程组,解方程组得出即可.
(1)
解:在y=x+1中,令y=0,得x=-2;
令x=0,得y=1,
∴A(0,1),B(-2,0).
∵抛物线y=ax2-2ax+c过点A,
∴c=1.
(2)
解:y=ax2-2ax+1=a(x2-2x+1-1)+1=a(x-1)2+1-a,
∴抛物线的对称轴为x=1,
当a>0,在—1≤x≤4时,抛物线在顶点处取得最小值,
∴当x=1时,y有最小值,
此时1-a=—4,解得a=5;
当a<0,在—1≤x≤4时,
∵4-1=3>1-(-1)=2,离对称轴越远函数值越小,
∴当x=4时,y有最小值,
此时9a+1-a=—4,
解得a= ,
综上,a的值为5或.
(3)
解:存在符合条件的M点的坐标,分别为,,,
当时,抛物线解析式为:,
设点P在y轴上,使△ABP的面积为1,点P(0,m),
∵,
∴,
解得,
∴点P2(0,0),或P1(0,2),
∴,
∴点M在过点P与AB平行的两条直线上,
①过点P2与 AB平行直线的解析式为:,
将代入中,
,
解得,,
∴,
②过点P1与AB平行的直线解析式为:,
将代入中,
,
解得,
∴ ,
综上所述,存在符合条件的M点的坐标,分别为,,.
【点睛】
本题考查一次函数与两轴的交点,抛物线顶点式,二次函数的最小值,平行线性质,联立方程组,三角形面积,掌握一次函数与两轴的交点,抛物线顶点式,二次函数的最小值,平行线性质,联立解方程组,三角形面积公式是解题关键.
2023年广东省佛山市禅城区中考数学二模试卷(含解析): 这是一份2023年广东省佛山市禅城区中考数学二模试卷(含解析),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
【真题汇编】2022年广东省河源市中考数学二模试题(含答案详解): 这是一份【真题汇编】2022年广东省河源市中考数学二模试题(含答案详解),共25页。
【真题汇编】2022年广东省佛山市禅城区中考数学模拟专项测试 B卷(含答案详解): 这是一份【真题汇编】2022年广东省佛山市禅城区中考数学模拟专项测试 B卷(含答案详解),共25页。